Metamath Proof Explorer


Theorem 3cubeslem3

Description: Lemma for 3cubes . (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Hypothesis 3cubeslem1.a φ A
Assertion 3cubeslem3 φ A 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3 + 3 3 A 2 + 3 2 A 3

Proof

Step Hyp Ref Expression
1 3cubeslem1.a φ A
2 1 3cubeslem3l φ A 3 3 A 2 + 3 2 A + 3 3 = A 7 3 9 + A 6 3 9 + A 5 3 8 + 3 8 + A 4 3 7 2 + 3 6 + A 3 3 6 + 3 6 + A 2 3 5 + A 3 3
3 1 3cubeslem3r φ 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3 + 3 3 A 2 + 3 2 A 3 = A 7 3 9 + A 6 3 9 + A 5 3 8 + 3 8 + A 4 3 7 2 + 3 6 + A 3 3 6 + 3 6 + A 2 3 5 + A 3 3
4 2 3 eqtr4d φ A 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3 + 3 3 A 2 + 3 2 A 3