Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Igor Ieskov
3cubeslem3
Next ⟩
3cubeslem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
3cubeslem3
Description:
Lemma for
3cubes
.
(Contributed by
Igor Ieskov
, 22-Jan-2024)
Ref
Expression
Hypothesis
3cubeslem1.a
⊢
φ
→
A
∈
ℚ
Assertion
3cubeslem3
⊢
φ
→
A
⁢
3
3
⁢
A
2
+
3
2
⁢
A
+
3
3
=
3
3
⁢
A
3
−
1
3
+
−
3
3
⁢
A
3
+
3
2
⁢
A
+
1
3
+
3
3
⁢
A
2
+
3
2
⁢
A
3
Proof
Step
Hyp
Ref
Expression
1
3cubeslem1.a
⊢
φ
→
A
∈
ℚ
2
1
3cubeslem3l
⊢
φ
→
A
⁢
3
3
⁢
A
2
+
3
2
⁢
A
+
3
3
=
A
7
⁢
3
9
+
A
6
⁢
3
9
+
A
5
⁢
3
8
+
3
8
+
A
4
⁢
3
7
⋅
2
+
3
6
+
A
3
⁢
3
6
+
3
6
+
A
2
⁢
3
5
+
A
⁢
3
3
3
1
3cubeslem3r
⊢
φ
→
3
3
⁢
A
3
−
1
3
+
−
3
3
⁢
A
3
+
3
2
⁢
A
+
1
3
+
3
3
⁢
A
2
+
3
2
⁢
A
3
=
A
7
⁢
3
9
+
A
6
⁢
3
9
+
A
5
⁢
3
8
+
3
8
+
A
4
⁢
3
7
⋅
2
+
3
6
+
A
3
⁢
3
6
+
3
6
+
A
2
⁢
3
5
+
A
⁢
3
3
4
2
3
eqtr4d
⊢
φ
→
A
⁢
3
3
⁢
A
2
+
3
2
⁢
A
+
3
3
=
3
3
⁢
A
3
−
1
3
+
−
3
3
⁢
A
3
+
3
2
⁢
A
+
1
3
+
3
3
⁢
A
2
+
3
2
⁢
A
3