Metamath Proof Explorer


Theorem 3oalem4

Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis 3oalem4.3
|- R = ( ( _|_ ` B ) i^i ( B vH A ) )
Assertion 3oalem4
|- R C_ ( _|_ ` B )

Proof

Step Hyp Ref Expression
1 3oalem4.3
 |-  R = ( ( _|_ ` B ) i^i ( B vH A ) )
2 inss1
 |-  ( ( _|_ ` B ) i^i ( B vH A ) ) C_ ( _|_ ` B )
3 1 2 eqsstri
 |-  R C_ ( _|_ ` B )