Step |
Hyp |
Ref |
Expression |
1 |
|
3oa.1 |
|- A e. CH |
2 |
|
3oa.2 |
|- B e. CH |
3 |
|
3oa.3 |
|- C e. CH |
4 |
|
3oa.4 |
|- R = ( ( _|_ ` B ) i^i ( B vH A ) ) |
5 |
|
3oa.5 |
|- S = ( ( _|_ ` C ) i^i ( C vH A ) ) |
6 |
4
|
3oalem4 |
|- R C_ ( _|_ ` B ) |
7 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
8 |
2 1
|
chjcli |
|- ( B vH A ) e. CH |
9 |
7 8
|
chincli |
|- ( ( _|_ ` B ) i^i ( B vH A ) ) e. CH |
10 |
4 9
|
eqeltri |
|- R e. CH |
11 |
10 2
|
osumi |
|- ( R C_ ( _|_ ` B ) -> ( R +H B ) = ( R vH B ) ) |
12 |
6 11
|
ax-mp |
|- ( R +H B ) = ( R vH B ) |
13 |
2
|
chshii |
|- B e. SH |
14 |
10
|
chshii |
|- R e. SH |
15 |
13 14
|
shscomi |
|- ( B +H R ) = ( R +H B ) |
16 |
2 10
|
chjcomi |
|- ( B vH R ) = ( R vH B ) |
17 |
12 15 16
|
3eqtr4i |
|- ( B +H R ) = ( B vH R ) |
18 |
5
|
3oalem4 |
|- S C_ ( _|_ ` C ) |
19 |
3
|
choccli |
|- ( _|_ ` C ) e. CH |
20 |
3 1
|
chjcli |
|- ( C vH A ) e. CH |
21 |
19 20
|
chincli |
|- ( ( _|_ ` C ) i^i ( C vH A ) ) e. CH |
22 |
5 21
|
eqeltri |
|- S e. CH |
23 |
22 3
|
osumi |
|- ( S C_ ( _|_ ` C ) -> ( S +H C ) = ( S vH C ) ) |
24 |
18 23
|
ax-mp |
|- ( S +H C ) = ( S vH C ) |
25 |
3
|
chshii |
|- C e. SH |
26 |
22
|
chshii |
|- S e. SH |
27 |
25 26
|
shscomi |
|- ( C +H S ) = ( S +H C ) |
28 |
3 22
|
chjcomi |
|- ( C vH S ) = ( S vH C ) |
29 |
24 27 28
|
3eqtr4i |
|- ( C +H S ) = ( C vH S ) |
30 |
17 29
|
ineq12i |
|- ( ( B +H R ) i^i ( C +H S ) ) = ( ( B vH R ) i^i ( C vH S ) ) |