Metamath Proof Explorer


Theorem 3oalem5

Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses 3oa.1
|- A e. CH
3oa.2
|- B e. CH
3oa.3
|- C e. CH
3oa.4
|- R = ( ( _|_ ` B ) i^i ( B vH A ) )
3oa.5
|- S = ( ( _|_ ` C ) i^i ( C vH A ) )
Assertion 3oalem5
|- ( ( B +H R ) i^i ( C +H S ) ) = ( ( B vH R ) i^i ( C vH S ) )

Proof

Step Hyp Ref Expression
1 3oa.1
 |-  A e. CH
2 3oa.2
 |-  B e. CH
3 3oa.3
 |-  C e. CH
4 3oa.4
 |-  R = ( ( _|_ ` B ) i^i ( B vH A ) )
5 3oa.5
 |-  S = ( ( _|_ ` C ) i^i ( C vH A ) )
6 4 3oalem4
 |-  R C_ ( _|_ ` B )
7 2 choccli
 |-  ( _|_ ` B ) e. CH
8 2 1 chjcli
 |-  ( B vH A ) e. CH
9 7 8 chincli
 |-  ( ( _|_ ` B ) i^i ( B vH A ) ) e. CH
10 4 9 eqeltri
 |-  R e. CH
11 10 2 osumi
 |-  ( R C_ ( _|_ ` B ) -> ( R +H B ) = ( R vH B ) )
12 6 11 ax-mp
 |-  ( R +H B ) = ( R vH B )
13 2 chshii
 |-  B e. SH
14 10 chshii
 |-  R e. SH
15 13 14 shscomi
 |-  ( B +H R ) = ( R +H B )
16 2 10 chjcomi
 |-  ( B vH R ) = ( R vH B )
17 12 15 16 3eqtr4i
 |-  ( B +H R ) = ( B vH R )
18 5 3oalem4
 |-  S C_ ( _|_ ` C )
19 3 choccli
 |-  ( _|_ ` C ) e. CH
20 3 1 chjcli
 |-  ( C vH A ) e. CH
21 19 20 chincli
 |-  ( ( _|_ ` C ) i^i ( C vH A ) ) e. CH
22 5 21 eqeltri
 |-  S e. CH
23 22 3 osumi
 |-  ( S C_ ( _|_ ` C ) -> ( S +H C ) = ( S vH C ) )
24 18 23 ax-mp
 |-  ( S +H C ) = ( S vH C )
25 3 chshii
 |-  C e. SH
26 22 chshii
 |-  S e. SH
27 25 26 shscomi
 |-  ( C +H S ) = ( S +H C )
28 3 22 chjcomi
 |-  ( C vH S ) = ( S vH C )
29 24 27 28 3eqtr4i
 |-  ( C +H S ) = ( C vH S )
30 17 29 ineq12i
 |-  ( ( B +H R ) i^i ( C +H S ) ) = ( ( B vH R ) i^i ( C vH S ) )