Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3oa.1 | ⊢ 𝐴 ∈ Cℋ | |
| 3oa.2 | ⊢ 𝐵 ∈ Cℋ | ||
| 3oa.3 | ⊢ 𝐶 ∈ Cℋ | ||
| 3oa.4 | ⊢ 𝑅 = ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 ∨ℋ 𝐴 ) ) | ||
| 3oa.5 | ⊢ 𝑆 = ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 ∨ℋ 𝐴 ) ) | ||
| Assertion | 3oalem5 | ⊢ ( ( 𝐵 +ℋ 𝑅 ) ∩ ( 𝐶 +ℋ 𝑆 ) ) = ( ( 𝐵 ∨ℋ 𝑅 ) ∩ ( 𝐶 ∨ℋ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3oa.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | 3oa.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 3oa.3 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | 3oa.4 | ⊢ 𝑅 = ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 ∨ℋ 𝐴 ) ) | |
| 5 | 3oa.5 | ⊢ 𝑆 = ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 ∨ℋ 𝐴 ) ) | |
| 6 | 4 | 3oalem4 | ⊢ 𝑅 ⊆ ( ⊥ ‘ 𝐵 ) |
| 7 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 8 | 2 1 | chjcli | ⊢ ( 𝐵 ∨ℋ 𝐴 ) ∈ Cℋ |
| 9 | 7 8 | chincli | ⊢ ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ∈ Cℋ |
| 10 | 4 9 | eqeltri | ⊢ 𝑅 ∈ Cℋ |
| 11 | 10 2 | osumi | ⊢ ( 𝑅 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝑅 +ℋ 𝐵 ) = ( 𝑅 ∨ℋ 𝐵 ) ) |
| 12 | 6 11 | ax-mp | ⊢ ( 𝑅 +ℋ 𝐵 ) = ( 𝑅 ∨ℋ 𝐵 ) |
| 13 | 2 | chshii | ⊢ 𝐵 ∈ Sℋ |
| 14 | 10 | chshii | ⊢ 𝑅 ∈ Sℋ |
| 15 | 13 14 | shscomi | ⊢ ( 𝐵 +ℋ 𝑅 ) = ( 𝑅 +ℋ 𝐵 ) |
| 16 | 2 10 | chjcomi | ⊢ ( 𝐵 ∨ℋ 𝑅 ) = ( 𝑅 ∨ℋ 𝐵 ) |
| 17 | 12 15 16 | 3eqtr4i | ⊢ ( 𝐵 +ℋ 𝑅 ) = ( 𝐵 ∨ℋ 𝑅 ) |
| 18 | 5 | 3oalem4 | ⊢ 𝑆 ⊆ ( ⊥ ‘ 𝐶 ) |
| 19 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐶 ) ∈ Cℋ |
| 20 | 3 1 | chjcli | ⊢ ( 𝐶 ∨ℋ 𝐴 ) ∈ Cℋ |
| 21 | 19 20 | chincli | ⊢ ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 ∨ℋ 𝐴 ) ) ∈ Cℋ |
| 22 | 5 21 | eqeltri | ⊢ 𝑆 ∈ Cℋ |
| 23 | 22 3 | osumi | ⊢ ( 𝑆 ⊆ ( ⊥ ‘ 𝐶 ) → ( 𝑆 +ℋ 𝐶 ) = ( 𝑆 ∨ℋ 𝐶 ) ) |
| 24 | 18 23 | ax-mp | ⊢ ( 𝑆 +ℋ 𝐶 ) = ( 𝑆 ∨ℋ 𝐶 ) |
| 25 | 3 | chshii | ⊢ 𝐶 ∈ Sℋ |
| 26 | 22 | chshii | ⊢ 𝑆 ∈ Sℋ |
| 27 | 25 26 | shscomi | ⊢ ( 𝐶 +ℋ 𝑆 ) = ( 𝑆 +ℋ 𝐶 ) |
| 28 | 3 22 | chjcomi | ⊢ ( 𝐶 ∨ℋ 𝑆 ) = ( 𝑆 ∨ℋ 𝐶 ) |
| 29 | 24 27 28 | 3eqtr4i | ⊢ ( 𝐶 +ℋ 𝑆 ) = ( 𝐶 ∨ℋ 𝑆 ) |
| 30 | 17 29 | ineq12i | ⊢ ( ( 𝐵 +ℋ 𝑅 ) ∩ ( 𝐶 +ℋ 𝑆 ) ) = ( ( 𝐵 ∨ℋ 𝑅 ) ∩ ( 𝐶 ∨ℋ 𝑆 ) ) |