Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3oa.1 | ⊢ 𝐴 ∈ Cℋ | |
3oa.2 | ⊢ 𝐵 ∈ Cℋ | ||
3oa.3 | ⊢ 𝐶 ∈ Cℋ | ||
3oa.4 | ⊢ 𝑅 = ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 ∨ℋ 𝐴 ) ) | ||
3oa.5 | ⊢ 𝑆 = ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 ∨ℋ 𝐴 ) ) | ||
Assertion | 3oalem5 | ⊢ ( ( 𝐵 +ℋ 𝑅 ) ∩ ( 𝐶 +ℋ 𝑆 ) ) = ( ( 𝐵 ∨ℋ 𝑅 ) ∩ ( 𝐶 ∨ℋ 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oa.1 | ⊢ 𝐴 ∈ Cℋ | |
2 | 3oa.2 | ⊢ 𝐵 ∈ Cℋ | |
3 | 3oa.3 | ⊢ 𝐶 ∈ Cℋ | |
4 | 3oa.4 | ⊢ 𝑅 = ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 ∨ℋ 𝐴 ) ) | |
5 | 3oa.5 | ⊢ 𝑆 = ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 ∨ℋ 𝐴 ) ) | |
6 | 4 | 3oalem4 | ⊢ 𝑅 ⊆ ( ⊥ ‘ 𝐵 ) |
7 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
8 | 2 1 | chjcli | ⊢ ( 𝐵 ∨ℋ 𝐴 ) ∈ Cℋ |
9 | 7 8 | chincli | ⊢ ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ∈ Cℋ |
10 | 4 9 | eqeltri | ⊢ 𝑅 ∈ Cℋ |
11 | 10 2 | osumi | ⊢ ( 𝑅 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝑅 +ℋ 𝐵 ) = ( 𝑅 ∨ℋ 𝐵 ) ) |
12 | 6 11 | ax-mp | ⊢ ( 𝑅 +ℋ 𝐵 ) = ( 𝑅 ∨ℋ 𝐵 ) |
13 | 2 | chshii | ⊢ 𝐵 ∈ Sℋ |
14 | 10 | chshii | ⊢ 𝑅 ∈ Sℋ |
15 | 13 14 | shscomi | ⊢ ( 𝐵 +ℋ 𝑅 ) = ( 𝑅 +ℋ 𝐵 ) |
16 | 2 10 | chjcomi | ⊢ ( 𝐵 ∨ℋ 𝑅 ) = ( 𝑅 ∨ℋ 𝐵 ) |
17 | 12 15 16 | 3eqtr4i | ⊢ ( 𝐵 +ℋ 𝑅 ) = ( 𝐵 ∨ℋ 𝑅 ) |
18 | 5 | 3oalem4 | ⊢ 𝑆 ⊆ ( ⊥ ‘ 𝐶 ) |
19 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐶 ) ∈ Cℋ |
20 | 3 1 | chjcli | ⊢ ( 𝐶 ∨ℋ 𝐴 ) ∈ Cℋ |
21 | 19 20 | chincli | ⊢ ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 ∨ℋ 𝐴 ) ) ∈ Cℋ |
22 | 5 21 | eqeltri | ⊢ 𝑆 ∈ Cℋ |
23 | 22 3 | osumi | ⊢ ( 𝑆 ⊆ ( ⊥ ‘ 𝐶 ) → ( 𝑆 +ℋ 𝐶 ) = ( 𝑆 ∨ℋ 𝐶 ) ) |
24 | 18 23 | ax-mp | ⊢ ( 𝑆 +ℋ 𝐶 ) = ( 𝑆 ∨ℋ 𝐶 ) |
25 | 3 | chshii | ⊢ 𝐶 ∈ Sℋ |
26 | 22 | chshii | ⊢ 𝑆 ∈ Sℋ |
27 | 25 26 | shscomi | ⊢ ( 𝐶 +ℋ 𝑆 ) = ( 𝑆 +ℋ 𝐶 ) |
28 | 3 22 | chjcomi | ⊢ ( 𝐶 ∨ℋ 𝑆 ) = ( 𝑆 ∨ℋ 𝐶 ) |
29 | 24 27 28 | 3eqtr4i | ⊢ ( 𝐶 +ℋ 𝑆 ) = ( 𝐶 ∨ℋ 𝑆 ) |
30 | 17 29 | ineq12i | ⊢ ( ( 𝐵 +ℋ 𝑅 ) ∩ ( 𝐶 +ℋ 𝑆 ) ) = ( ( 𝐵 ∨ℋ 𝑅 ) ∩ ( 𝐶 ∨ℋ 𝑆 ) ) |