Metamath Proof Explorer


Theorem 3oalem5

Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses 3oa.1 𝐴C
3oa.2 𝐵C
3oa.3 𝐶C
3oa.4 𝑅 = ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 𝐴 ) )
3oa.5 𝑆 = ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 𝐴 ) )
Assertion 3oalem5 ( ( 𝐵 + 𝑅 ) ∩ ( 𝐶 + 𝑆 ) ) = ( ( 𝐵 𝑅 ) ∩ ( 𝐶 𝑆 ) )

Proof

Step Hyp Ref Expression
1 3oa.1 𝐴C
2 3oa.2 𝐵C
3 3oa.3 𝐶C
4 3oa.4 𝑅 = ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 𝐴 ) )
5 3oa.5 𝑆 = ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 𝐴 ) )
6 4 3oalem4 𝑅 ⊆ ( ⊥ ‘ 𝐵 )
7 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
8 2 1 chjcli ( 𝐵 𝐴 ) ∈ C
9 7 8 chincli ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 𝐴 ) ) ∈ C
10 4 9 eqeltri 𝑅C
11 10 2 osumi ( 𝑅 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝑅 + 𝐵 ) = ( 𝑅 𝐵 ) )
12 6 11 ax-mp ( 𝑅 + 𝐵 ) = ( 𝑅 𝐵 )
13 2 chshii 𝐵S
14 10 chshii 𝑅S
15 13 14 shscomi ( 𝐵 + 𝑅 ) = ( 𝑅 + 𝐵 )
16 2 10 chjcomi ( 𝐵 𝑅 ) = ( 𝑅 𝐵 )
17 12 15 16 3eqtr4i ( 𝐵 + 𝑅 ) = ( 𝐵 𝑅 )
18 5 3oalem4 𝑆 ⊆ ( ⊥ ‘ 𝐶 )
19 3 choccli ( ⊥ ‘ 𝐶 ) ∈ C
20 3 1 chjcli ( 𝐶 𝐴 ) ∈ C
21 19 20 chincli ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 𝐴 ) ) ∈ C
22 5 21 eqeltri 𝑆C
23 22 3 osumi ( 𝑆 ⊆ ( ⊥ ‘ 𝐶 ) → ( 𝑆 + 𝐶 ) = ( 𝑆 𝐶 ) )
24 18 23 ax-mp ( 𝑆 + 𝐶 ) = ( 𝑆 𝐶 )
25 3 chshii 𝐶S
26 22 chshii 𝑆S
27 25 26 shscomi ( 𝐶 + 𝑆 ) = ( 𝑆 + 𝐶 )
28 3 22 chjcomi ( 𝐶 𝑆 ) = ( 𝑆 𝐶 )
29 24 27 28 3eqtr4i ( 𝐶 + 𝑆 ) = ( 𝐶 𝑆 )
30 17 29 ineq12i ( ( 𝐵 + 𝑅 ) ∩ ( 𝐶 + 𝑆 ) ) = ( ( 𝐵 𝑅 ) ∩ ( 𝐶 𝑆 ) )