Metamath Proof Explorer


Theorem 3oalem4

Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis 3oalem4.3 𝑅 = ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 𝐴 ) )
Assertion 3oalem4 𝑅 ⊆ ( ⊥ ‘ 𝐵 )

Proof

Step Hyp Ref Expression
1 3oalem4.3 𝑅 = ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 𝐴 ) )
2 inss1 ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 𝐴 ) ) ⊆ ( ⊥ ‘ 𝐵 )
3 1 2 eqsstri 𝑅 ⊆ ( ⊥ ‘ 𝐵 )