| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3oa.1 |
|- A e. CH |
| 2 |
|
3oa.2 |
|- B e. CH |
| 3 |
|
3oa.3 |
|- C e. CH |
| 4 |
|
3oa.4 |
|- R = ( ( _|_ ` B ) i^i ( B vH A ) ) |
| 5 |
|
3oa.5 |
|- S = ( ( _|_ ` C ) i^i ( C vH A ) ) |
| 6 |
2
|
chshii |
|- B e. SH |
| 7 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 8 |
2 1
|
chjcli |
|- ( B vH A ) e. CH |
| 9 |
7 8
|
chincli |
|- ( ( _|_ ` B ) i^i ( B vH A ) ) e. CH |
| 10 |
4 9
|
eqeltri |
|- R e. CH |
| 11 |
10
|
chshii |
|- R e. SH |
| 12 |
3
|
choccli |
|- ( _|_ ` C ) e. CH |
| 13 |
3 1
|
chjcli |
|- ( C vH A ) e. CH |
| 14 |
12 13
|
chincli |
|- ( ( _|_ ` C ) i^i ( C vH A ) ) e. CH |
| 15 |
5 14
|
eqeltri |
|- S e. CH |
| 16 |
15
|
chshii |
|- S e. SH |
| 17 |
3
|
chshii |
|- C e. SH |
| 18 |
6 17
|
shscli |
|- ( B +H C ) e. SH |
| 19 |
11 16
|
shscli |
|- ( R +H S ) e. SH |
| 20 |
18 19
|
shincli |
|- ( ( B +H C ) i^i ( R +H S ) ) e. SH |
| 21 |
16 20
|
shscli |
|- ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) e. SH |
| 22 |
11 21
|
shincli |
|- ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) e. SH |
| 23 |
6 22
|
shsleji |
|- ( B +H ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) ) C_ ( B vH ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) ) |
| 24 |
16 20
|
shsleji |
|- ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) C_ ( S vH ( ( B +H C ) i^i ( R +H S ) ) ) |
| 25 |
2 3
|
chsleji |
|- ( B +H C ) C_ ( B vH C ) |
| 26 |
|
ssrin |
|- ( ( B +H C ) C_ ( B vH C ) -> ( ( B +H C ) i^i ( R +H S ) ) C_ ( ( B vH C ) i^i ( R +H S ) ) ) |
| 27 |
25 26
|
ax-mp |
|- ( ( B +H C ) i^i ( R +H S ) ) C_ ( ( B vH C ) i^i ( R +H S ) ) |
| 28 |
10 15
|
chsleji |
|- ( R +H S ) C_ ( R vH S ) |
| 29 |
|
sslin |
|- ( ( R +H S ) C_ ( R vH S ) -> ( ( B vH C ) i^i ( R +H S ) ) C_ ( ( B vH C ) i^i ( R vH S ) ) ) |
| 30 |
28 29
|
ax-mp |
|- ( ( B vH C ) i^i ( R +H S ) ) C_ ( ( B vH C ) i^i ( R vH S ) ) |
| 31 |
27 30
|
sstri |
|- ( ( B +H C ) i^i ( R +H S ) ) C_ ( ( B vH C ) i^i ( R vH S ) ) |
| 32 |
2 3
|
chjcli |
|- ( B vH C ) e. CH |
| 33 |
10 15
|
chjcli |
|- ( R vH S ) e. CH |
| 34 |
32 33
|
chincli |
|- ( ( B vH C ) i^i ( R vH S ) ) e. CH |
| 35 |
34
|
chshii |
|- ( ( B vH C ) i^i ( R vH S ) ) e. SH |
| 36 |
20 35 16
|
shlej2i |
|- ( ( ( B +H C ) i^i ( R +H S ) ) C_ ( ( B vH C ) i^i ( R vH S ) ) -> ( S vH ( ( B +H C ) i^i ( R +H S ) ) ) C_ ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) |
| 37 |
31 36
|
ax-mp |
|- ( S vH ( ( B +H C ) i^i ( R +H S ) ) ) C_ ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) |
| 38 |
24 37
|
sstri |
|- ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) C_ ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) |
| 39 |
|
sslin |
|- ( ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) C_ ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) -> ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) C_ ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) ) |
| 40 |
38 39
|
ax-mp |
|- ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) C_ ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) |
| 41 |
15 34
|
chjcli |
|- ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) e. CH |
| 42 |
10 41
|
chincli |
|- ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) e. CH |
| 43 |
42
|
chshii |
|- ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) e. SH |
| 44 |
22 43 6
|
shlej2i |
|- ( ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) C_ ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) -> ( B vH ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) ) C_ ( B vH ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) ) ) |
| 45 |
40 44
|
ax-mp |
|- ( B vH ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) ) C_ ( B vH ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) ) |
| 46 |
23 45
|
sstri |
|- ( B +H ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) ) C_ ( B vH ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) ) |