Step |
Hyp |
Ref |
Expression |
1 |
|
3oa.1 |
|- A e. CH |
2 |
|
3oa.2 |
|- B e. CH |
3 |
|
3oa.3 |
|- C e. CH |
4 |
|
3oa.4 |
|- R = ( ( _|_ ` B ) i^i ( B vH A ) ) |
5 |
|
3oa.5 |
|- S = ( ( _|_ ` C ) i^i ( C vH A ) ) |
6 |
1 2 3 4 5
|
3oalem5 |
|- ( ( B +H R ) i^i ( C +H S ) ) = ( ( B vH R ) i^i ( C vH S ) ) |
7 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
8 |
2 1
|
chjcli |
|- ( B vH A ) e. CH |
9 |
7 8
|
chincli |
|- ( ( _|_ ` B ) i^i ( B vH A ) ) e. CH |
10 |
4 9
|
eqeltri |
|- R e. CH |
11 |
3
|
choccli |
|- ( _|_ ` C ) e. CH |
12 |
3 1
|
chjcli |
|- ( C vH A ) e. CH |
13 |
11 12
|
chincli |
|- ( ( _|_ ` C ) i^i ( C vH A ) ) e. CH |
14 |
5 13
|
eqeltri |
|- S e. CH |
15 |
2 3 10 14
|
3oalem3 |
|- ( ( B +H R ) i^i ( C +H S ) ) C_ ( B +H ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) ) |
16 |
1 2 3 4 5
|
3oalem6 |
|- ( B +H ( R i^i ( S +H ( ( B +H C ) i^i ( R +H S ) ) ) ) ) C_ ( B vH ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) ) |
17 |
15 16
|
sstri |
|- ( ( B +H R ) i^i ( C +H S ) ) C_ ( B vH ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) ) |
18 |
6 17
|
eqsstrri |
|- ( ( B vH R ) i^i ( C vH S ) ) C_ ( B vH ( R i^i ( S vH ( ( B vH C ) i^i ( R vH S ) ) ) ) ) |