| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3oa.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
3oa.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
3oa.3 |
⊢ 𝐶 ∈ Cℋ |
| 4 |
|
3oa.4 |
⊢ 𝑅 = ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 ∨ℋ 𝐴 ) ) |
| 5 |
|
3oa.5 |
⊢ 𝑆 = ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 ∨ℋ 𝐴 ) ) |
| 6 |
1 2 3 4 5
|
3oalem5 |
⊢ ( ( 𝐵 +ℋ 𝑅 ) ∩ ( 𝐶 +ℋ 𝑆 ) ) = ( ( 𝐵 ∨ℋ 𝑅 ) ∩ ( 𝐶 ∨ℋ 𝑆 ) ) |
| 7 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 8 |
2 1
|
chjcli |
⊢ ( 𝐵 ∨ℋ 𝐴 ) ∈ Cℋ |
| 9 |
7 8
|
chincli |
⊢ ( ( ⊥ ‘ 𝐵 ) ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ∈ Cℋ |
| 10 |
4 9
|
eqeltri |
⊢ 𝑅 ∈ Cℋ |
| 11 |
3
|
choccli |
⊢ ( ⊥ ‘ 𝐶 ) ∈ Cℋ |
| 12 |
3 1
|
chjcli |
⊢ ( 𝐶 ∨ℋ 𝐴 ) ∈ Cℋ |
| 13 |
11 12
|
chincli |
⊢ ( ( ⊥ ‘ 𝐶 ) ∩ ( 𝐶 ∨ℋ 𝐴 ) ) ∈ Cℋ |
| 14 |
5 13
|
eqeltri |
⊢ 𝑆 ∈ Cℋ |
| 15 |
2 3 10 14
|
3oalem3 |
⊢ ( ( 𝐵 +ℋ 𝑅 ) ∩ ( 𝐶 +ℋ 𝑆 ) ) ⊆ ( 𝐵 +ℋ ( 𝑅 ∩ ( 𝑆 +ℋ ( ( 𝐵 +ℋ 𝐶 ) ∩ ( 𝑅 +ℋ 𝑆 ) ) ) ) ) |
| 16 |
1 2 3 4 5
|
3oalem6 |
⊢ ( 𝐵 +ℋ ( 𝑅 ∩ ( 𝑆 +ℋ ( ( 𝐵 +ℋ 𝐶 ) ∩ ( 𝑅 +ℋ 𝑆 ) ) ) ) ) ⊆ ( 𝐵 ∨ℋ ( 𝑅 ∩ ( 𝑆 ∨ℋ ( ( 𝐵 ∨ℋ 𝐶 ) ∩ ( 𝑅 ∨ℋ 𝑆 ) ) ) ) ) |
| 17 |
15 16
|
sstri |
⊢ ( ( 𝐵 +ℋ 𝑅 ) ∩ ( 𝐶 +ℋ 𝑆 ) ) ⊆ ( 𝐵 ∨ℋ ( 𝑅 ∩ ( 𝑆 ∨ℋ ( ( 𝐵 ∨ℋ 𝐶 ) ∩ ( 𝑅 ∨ℋ 𝑆 ) ) ) ) ) |
| 18 |
6 17
|
eqsstrri |
⊢ ( ( 𝐵 ∨ℋ 𝑅 ) ∩ ( 𝐶 ∨ℋ 𝑆 ) ) ⊆ ( 𝐵 ∨ℋ ( 𝑅 ∩ ( 𝑆 ∨ℋ ( ( 𝐵 ∨ℋ 𝐶 ) ∩ ( 𝑅 ∨ℋ 𝑆 ) ) ) ) ) |