Metamath Proof Explorer


Theorem 3oalem6

Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses 3oa.1 A C
3oa.2 B C
3oa.3 C C
3oa.4 R = B B A
3oa.5 S = C C A
Assertion 3oalem6 B + R S + B + C R + S B R S B C R S

Proof

Step Hyp Ref Expression
1 3oa.1 A C
2 3oa.2 B C
3 3oa.3 C C
4 3oa.4 R = B B A
5 3oa.5 S = C C A
6 2 chshii B S
7 2 choccli B C
8 2 1 chjcli B A C
9 7 8 chincli B B A C
10 4 9 eqeltri R C
11 10 chshii R S
12 3 choccli C C
13 3 1 chjcli C A C
14 12 13 chincli C C A C
15 5 14 eqeltri S C
16 15 chshii S S
17 3 chshii C S
18 6 17 shscli B + C S
19 11 16 shscli R + S S
20 18 19 shincli B + C R + S S
21 16 20 shscli S + B + C R + S S
22 11 21 shincli R S + B + C R + S S
23 6 22 shsleji B + R S + B + C R + S B R S + B + C R + S
24 16 20 shsleji S + B + C R + S S B + C R + S
25 2 3 chsleji B + C B C
26 ssrin B + C B C B + C R + S B C R + S
27 25 26 ax-mp B + C R + S B C R + S
28 10 15 chsleji R + S R S
29 sslin R + S R S B C R + S B C R S
30 28 29 ax-mp B C R + S B C R S
31 27 30 sstri B + C R + S B C R S
32 2 3 chjcli B C C
33 10 15 chjcli R S C
34 32 33 chincli B C R S C
35 34 chshii B C R S S
36 20 35 16 shlej2i B + C R + S B C R S S B + C R + S S B C R S
37 31 36 ax-mp S B + C R + S S B C R S
38 24 37 sstri S + B + C R + S S B C R S
39 sslin S + B + C R + S S B C R S R S + B + C R + S R S B C R S
40 38 39 ax-mp R S + B + C R + S R S B C R S
41 15 34 chjcli S B C R S C
42 10 41 chincli R S B C R S C
43 42 chshii R S B C R S S
44 22 43 6 shlej2i R S + B + C R + S R S B C R S B R S + B + C R + S B R S B C R S
45 40 44 ax-mp B R S + B + C R + S B R S B C R S
46 23 45 sstri B + R S + B + C R + S B R S B C R S