| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
|- P = <" A B C D "> |
| 2 |
|
3wlkd.f |
|- F = <" J K L "> |
| 3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
| 4 |
|
3wlkd.n |
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
| 5 |
|
3wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
| 6 |
|
3wlkd.v |
|- V = ( Vtx ` G ) |
| 7 |
|
3wlkd.i |
|- I = ( iEdg ` G ) |
| 8 |
1 2 3 4 5 6 7
|
3wlkd |
|- ( ph -> F ( Walks ` G ) P ) |
| 9 |
8
|
wlkonwlk1l |
|- ( ph -> F ( ( P ` 0 ) ( WalksOn ` G ) ( lastS ` P ) ) P ) |
| 10 |
1 2 3
|
3wlkdlem3 |
|- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| 11 |
|
simpll |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 0 ) = A ) |
| 12 |
11
|
eqcomd |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> A = ( P ` 0 ) ) |
| 13 |
10 12
|
syl |
|- ( ph -> A = ( P ` 0 ) ) |
| 14 |
1
|
fveq2i |
|- ( lastS ` P ) = ( lastS ` <" A B C D "> ) |
| 15 |
|
fvex |
|- ( P ` 3 ) e. _V |
| 16 |
|
eleq1 |
|- ( ( P ` 3 ) = D -> ( ( P ` 3 ) e. _V <-> D e. _V ) ) |
| 17 |
15 16
|
mpbii |
|- ( ( P ` 3 ) = D -> D e. _V ) |
| 18 |
|
lsws4 |
|- ( D e. _V -> ( lastS ` <" A B C D "> ) = D ) |
| 19 |
17 18
|
syl |
|- ( ( P ` 3 ) = D -> ( lastS ` <" A B C D "> ) = D ) |
| 20 |
14 19
|
eqtr2id |
|- ( ( P ` 3 ) = D -> D = ( lastS ` P ) ) |
| 21 |
20
|
ad2antll |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> D = ( lastS ` P ) ) |
| 22 |
10 21
|
syl |
|- ( ph -> D = ( lastS ` P ) ) |
| 23 |
13 22
|
oveq12d |
|- ( ph -> ( A ( WalksOn ` G ) D ) = ( ( P ` 0 ) ( WalksOn ` G ) ( lastS ` P ) ) ) |
| 24 |
23
|
breqd |
|- ( ph -> ( F ( A ( WalksOn ` G ) D ) P <-> F ( ( P ` 0 ) ( WalksOn ` G ) ( lastS ` P ) ) P ) ) |
| 25 |
9 24
|
mpbird |
|- ( ph -> F ( A ( WalksOn ` G ) D ) P ) |