| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 |
| 2 |
|
3wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 |
| 3 |
|
3wlkd.s |
⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) |
| 4 |
|
3wlkd.n |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) |
| 5 |
|
3wlkd.e |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
| 6 |
|
3wlkd.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 7 |
|
3wlkd.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 8 |
1 2 3 4 5 6 7
|
3wlkd |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 9 |
8
|
wlkonwlk1l |
⊢ ( 𝜑 → 𝐹 ( ( 𝑃 ‘ 0 ) ( WalksOn ‘ 𝐺 ) ( lastS ‘ 𝑃 ) ) 𝑃 ) |
| 10 |
1 2 3
|
3wlkdlem3 |
⊢ ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |
| 11 |
|
simpll |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( 𝑃 ‘ 0 ) = 𝐴 ) |
| 12 |
11
|
eqcomd |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → 𝐴 = ( 𝑃 ‘ 0 ) ) |
| 13 |
10 12
|
syl |
⊢ ( 𝜑 → 𝐴 = ( 𝑃 ‘ 0 ) ) |
| 14 |
1
|
fveq2i |
⊢ ( lastS ‘ 𝑃 ) = ( lastS ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) |
| 15 |
|
fvex |
⊢ ( 𝑃 ‘ 3 ) ∈ V |
| 16 |
|
eleq1 |
⊢ ( ( 𝑃 ‘ 3 ) = 𝐷 → ( ( 𝑃 ‘ 3 ) ∈ V ↔ 𝐷 ∈ V ) ) |
| 17 |
15 16
|
mpbii |
⊢ ( ( 𝑃 ‘ 3 ) = 𝐷 → 𝐷 ∈ V ) |
| 18 |
|
lsws4 |
⊢ ( 𝐷 ∈ V → ( lastS ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 𝐷 ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝑃 ‘ 3 ) = 𝐷 → ( lastS ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 𝐷 ) |
| 20 |
14 19
|
eqtr2id |
⊢ ( ( 𝑃 ‘ 3 ) = 𝐷 → 𝐷 = ( lastS ‘ 𝑃 ) ) |
| 21 |
20
|
ad2antll |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → 𝐷 = ( lastS ‘ 𝑃 ) ) |
| 22 |
10 21
|
syl |
⊢ ( 𝜑 → 𝐷 = ( lastS ‘ 𝑃 ) ) |
| 23 |
13 22
|
oveq12d |
⊢ ( 𝜑 → ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐷 ) = ( ( 𝑃 ‘ 0 ) ( WalksOn ‘ 𝐺 ) ( lastS ‘ 𝑃 ) ) ) |
| 24 |
23
|
breqd |
⊢ ( 𝜑 → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ↔ 𝐹 ( ( 𝑃 ‘ 0 ) ( WalksOn ‘ 𝐺 ) ( lastS ‘ 𝑃 ) ) 𝑃 ) ) |
| 25 |
9 24
|
mpbird |
⊢ ( 𝜑 → 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) |