Step |
Hyp |
Ref |
Expression |
1 |
|
3anass |
|- ( ( ( ph /\ ps ) /\ ch /\ th ) <-> ( ( ph /\ ps ) /\ ( ch /\ th ) ) ) |
2 |
|
ancom |
|- ( ( ph /\ ps ) <-> ( ps /\ ph ) ) |
3 |
2
|
anbi1i |
|- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> ( ( ps /\ ph ) /\ ( ch /\ th ) ) ) |
4 |
|
anass |
|- ( ( ( ps /\ ph ) /\ ( ch /\ th ) ) <-> ( ps /\ ( ph /\ ( ch /\ th ) ) ) ) |
5 |
|
3anass |
|- ( ( ph /\ ch /\ th ) <-> ( ph /\ ( ch /\ th ) ) ) |
6 |
5
|
bicomi |
|- ( ( ph /\ ( ch /\ th ) ) <-> ( ph /\ ch /\ th ) ) |
7 |
6
|
anbi2i |
|- ( ( ps /\ ( ph /\ ( ch /\ th ) ) ) <-> ( ps /\ ( ph /\ ch /\ th ) ) ) |
8 |
4 7
|
bitri |
|- ( ( ( ps /\ ph ) /\ ( ch /\ th ) ) <-> ( ps /\ ( ph /\ ch /\ th ) ) ) |
9 |
3 8
|
bitri |
|- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> ( ps /\ ( ph /\ ch /\ th ) ) ) |
10 |
1 9
|
bitri |
|- ( ( ( ph /\ ps ) /\ ch /\ th ) <-> ( ps /\ ( ph /\ ch /\ th ) ) ) |