Metamath Proof Explorer


Theorem 8t7e56

Description: 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8t7e56
|- ( 8 x. 7 ) = ; 5 6

Proof

Step Hyp Ref Expression
1 8nn0
 |-  8 e. NN0
2 6nn0
 |-  6 e. NN0
3 df-7
 |-  7 = ( 6 + 1 )
4 8t6e48
 |-  ( 8 x. 6 ) = ; 4 8
5 4nn0
 |-  4 e. NN0
6 eqid
 |-  ; 4 8 = ; 4 8
7 4p1e5
 |-  ( 4 + 1 ) = 5
8 8p8e16
 |-  ( 8 + 8 ) = ; 1 6
9 5 1 1 6 7 2 8 decaddci
 |-  ( ; 4 8 + 8 ) = ; 5 6
10 1 2 3 4 9 4t3lem
 |-  ( 8 x. 7 ) = ; 5 6