Description: Theorem *11.56 in WhiteheadRussell p. 165. Special case of aaan . (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | aaanv | |- ( ( A. x ph /\ A. y ps ) <-> A. x A. y ( ph /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ y ph |
|
| 2 | nfv | |- F/ x ps |
|
| 3 | 1 2 | aaan | |- ( A. x A. y ( ph /\ ps ) <-> ( A. x ph /\ A. y ps ) ) |
| 4 | 3 | bicomi | |- ( ( A. x ph /\ A. y ps ) <-> A. x A. y ( ph /\ ps ) ) |