Description: Theorem *11.56 in WhiteheadRussell p. 165. Special case of aaan . (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | aaanv | |- ( ( A. x ph /\ A. y ps ) <-> A. x A. y ( ph /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |- F/ y ph |
|
2 | nfv | |- F/ x ps |
|
3 | 1 2 | aaan | |- ( A. x A. y ( ph /\ ps ) <-> ( A. x ph /\ A. y ps ) ) |
4 | 3 | bicomi | |- ( ( A. x ph /\ A. y ps ) <-> A. x A. y ( ph /\ ps ) ) |