Description: Theorem *11.56 in WhiteheadRussell p. 165. Special case of aaan . (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | aaanv | ⊢ ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | 1 2 | aaan | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) ) | 
| 4 | 3 | bicomi | ⊢ ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ) |