| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.c |  |-  F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) | 
						
							| 2 |  | aaliou3lem.d |  |-  L = sum_ b e. NN ( F ` b ) | 
						
							| 3 |  | aaliou3lem.e |  |-  H = ( c e. NN |-> sum_ b e. ( 1 ... c ) ( F ` b ) ) | 
						
							| 4 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 5 | 4 | sumeq1i |  |-  sum_ b e. NN ( F ` b ) = sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) | 
						
							| 6 | 2 5 | eqtri |  |-  L = sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) | 
						
							| 7 |  | 1nn |  |-  1 e. NN | 
						
							| 8 |  | eqid |  |-  ( c e. ( ZZ>= ` 1 ) |-> ( ( 2 ^ -u ( ! ` 1 ) ) x. ( ( 1 / 2 ) ^ ( c - 1 ) ) ) ) = ( c e. ( ZZ>= ` 1 ) |-> ( ( 2 ^ -u ( ! ` 1 ) ) x. ( ( 1 / 2 ) ^ ( c - 1 ) ) ) ) | 
						
							| 9 | 8 1 | aaliou3lem3 |  |-  ( 1 e. NN -> ( seq 1 ( + , F ) e. dom ~~> /\ sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` 1 ) ) ) ) ) | 
						
							| 10 | 9 | simp2d |  |-  ( 1 e. NN -> sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR+ ) | 
						
							| 11 |  | rpre |  |-  ( sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR+ -> sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR ) | 
						
							| 12 | 7 10 11 | mp2b |  |-  sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR | 
						
							| 13 | 6 12 | eqeltri |  |-  L e. RR |