Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.c |
|- F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) |
2 |
|
aaliou3lem.d |
|- L = sum_ b e. NN ( F ` b ) |
3 |
|
aaliou3lem.e |
|- H = ( c e. NN |-> sum_ b e. ( 1 ... c ) ( F ` b ) ) |
4 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
5 |
4
|
sumeq1i |
|- sum_ b e. NN ( F ` b ) = sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) |
6 |
2 5
|
eqtri |
|- L = sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) |
7 |
|
1nn |
|- 1 e. NN |
8 |
|
eqid |
|- ( c e. ( ZZ>= ` 1 ) |-> ( ( 2 ^ -u ( ! ` 1 ) ) x. ( ( 1 / 2 ) ^ ( c - 1 ) ) ) ) = ( c e. ( ZZ>= ` 1 ) |-> ( ( 2 ^ -u ( ! ` 1 ) ) x. ( ( 1 / 2 ) ^ ( c - 1 ) ) ) ) |
9 |
8 1
|
aaliou3lem3 |
|- ( 1 e. NN -> ( seq 1 ( + , F ) e. dom ~~> /\ sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` 1 ) ) ) ) ) |
10 |
9
|
simp2d |
|- ( 1 e. NN -> sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR+ ) |
11 |
|
rpre |
|- ( sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR+ -> sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR ) |
12 |
7 10 11
|
mp2b |
|- sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR |
13 |
6 12
|
eqeltri |
|- L e. RR |