Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.c |
|- F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) |
2 |
|
aaliou3lem.d |
|- L = sum_ b e. NN ( F ` b ) |
3 |
|
aaliou3lem.e |
|- H = ( c e. NN |-> sum_ b e. ( 1 ... c ) ( F ` b ) ) |
4 |
|
oveq2 |
|- ( c = A -> ( 1 ... c ) = ( 1 ... A ) ) |
5 |
4
|
sumeq1d |
|- ( c = A -> sum_ b e. ( 1 ... c ) ( F ` b ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) |
6 |
|
sumex |
|- sum_ b e. ( 1 ... A ) ( F ` b ) e. _V |
7 |
5 3 6
|
fvmpt |
|- ( A e. NN -> ( H ` A ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) |
8 |
|
fzfid |
|- ( A e. NN -> ( 1 ... A ) e. Fin ) |
9 |
|
elfznn |
|- ( b e. ( 1 ... A ) -> b e. NN ) |
10 |
9
|
adantl |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> b e. NN ) |
11 |
|
fveq2 |
|- ( a = b -> ( ! ` a ) = ( ! ` b ) ) |
12 |
11
|
negeqd |
|- ( a = b -> -u ( ! ` a ) = -u ( ! ` b ) ) |
13 |
12
|
oveq2d |
|- ( a = b -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` b ) ) ) |
14 |
|
ovex |
|- ( 2 ^ -u ( ! ` b ) ) e. _V |
15 |
13 1 14
|
fvmpt |
|- ( b e. NN -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) ) |
16 |
|
2rp |
|- 2 e. RR+ |
17 |
|
nnnn0 |
|- ( b e. NN -> b e. NN0 ) |
18 |
17
|
faccld |
|- ( b e. NN -> ( ! ` b ) e. NN ) |
19 |
18
|
nnzd |
|- ( b e. NN -> ( ! ` b ) e. ZZ ) |
20 |
19
|
znegcld |
|- ( b e. NN -> -u ( ! ` b ) e. ZZ ) |
21 |
|
rpexpcl |
|- ( ( 2 e. RR+ /\ -u ( ! ` b ) e. ZZ ) -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) |
22 |
16 20 21
|
sylancr |
|- ( b e. NN -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) |
23 |
22
|
rpred |
|- ( b e. NN -> ( 2 ^ -u ( ! ` b ) ) e. RR ) |
24 |
15 23
|
eqeltrd |
|- ( b e. NN -> ( F ` b ) e. RR ) |
25 |
10 24
|
syl |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( F ` b ) e. RR ) |
26 |
8 25
|
fsumrecl |
|- ( A e. NN -> sum_ b e. ( 1 ... A ) ( F ` b ) e. RR ) |
27 |
7 26
|
eqeltrd |
|- ( A e. NN -> ( H ` A ) e. RR ) |