Metamath Proof Explorer


Theorem aaliou3lem5

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.c
|- F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) )
aaliou3lem.d
|- L = sum_ b e. NN ( F ` b )
aaliou3lem.e
|- H = ( c e. NN |-> sum_ b e. ( 1 ... c ) ( F ` b ) )
Assertion aaliou3lem5
|- ( A e. NN -> ( H ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 aaliou3lem.c
 |-  F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) )
2 aaliou3lem.d
 |-  L = sum_ b e. NN ( F ` b )
3 aaliou3lem.e
 |-  H = ( c e. NN |-> sum_ b e. ( 1 ... c ) ( F ` b ) )
4 oveq2
 |-  ( c = A -> ( 1 ... c ) = ( 1 ... A ) )
5 4 sumeq1d
 |-  ( c = A -> sum_ b e. ( 1 ... c ) ( F ` b ) = sum_ b e. ( 1 ... A ) ( F ` b ) )
6 sumex
 |-  sum_ b e. ( 1 ... A ) ( F ` b ) e. _V
7 5 3 6 fvmpt
 |-  ( A e. NN -> ( H ` A ) = sum_ b e. ( 1 ... A ) ( F ` b ) )
8 fzfid
 |-  ( A e. NN -> ( 1 ... A ) e. Fin )
9 elfznn
 |-  ( b e. ( 1 ... A ) -> b e. NN )
10 9 adantl
 |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> b e. NN )
11 fveq2
 |-  ( a = b -> ( ! ` a ) = ( ! ` b ) )
12 11 negeqd
 |-  ( a = b -> -u ( ! ` a ) = -u ( ! ` b ) )
13 12 oveq2d
 |-  ( a = b -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` b ) ) )
14 ovex
 |-  ( 2 ^ -u ( ! ` b ) ) e. _V
15 13 1 14 fvmpt
 |-  ( b e. NN -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) )
16 2rp
 |-  2 e. RR+
17 nnnn0
 |-  ( b e. NN -> b e. NN0 )
18 17 faccld
 |-  ( b e. NN -> ( ! ` b ) e. NN )
19 18 nnzd
 |-  ( b e. NN -> ( ! ` b ) e. ZZ )
20 19 znegcld
 |-  ( b e. NN -> -u ( ! ` b ) e. ZZ )
21 rpexpcl
 |-  ( ( 2 e. RR+ /\ -u ( ! ` b ) e. ZZ ) -> ( 2 ^ -u ( ! ` b ) ) e. RR+ )
22 16 20 21 sylancr
 |-  ( b e. NN -> ( 2 ^ -u ( ! ` b ) ) e. RR+ )
23 22 rpred
 |-  ( b e. NN -> ( 2 ^ -u ( ! ` b ) ) e. RR )
24 15 23 eqeltrd
 |-  ( b e. NN -> ( F ` b ) e. RR )
25 10 24 syl
 |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( F ` b ) e. RR )
26 8 25 fsumrecl
 |-  ( A e. NN -> sum_ b e. ( 1 ... A ) ( F ` b ) e. RR )
27 7 26 eqeltrd
 |-  ( A e. NN -> ( H ` A ) e. RR )