Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.c |
|- F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) |
2 |
|
aaliou3lem.d |
|- L = sum_ b e. NN ( F ` b ) |
3 |
|
aaliou3lem.e |
|- H = ( c e. NN |-> sum_ b e. ( 1 ... c ) ( F ` b ) ) |
4 |
|
oveq2 |
|- ( c = A -> ( 1 ... c ) = ( 1 ... A ) ) |
5 |
4
|
sumeq1d |
|- ( c = A -> sum_ b e. ( 1 ... c ) ( F ` b ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) |
6 |
|
sumex |
|- sum_ b e. ( 1 ... A ) ( F ` b ) e. _V |
7 |
5 3 6
|
fvmpt |
|- ( A e. NN -> ( H ` A ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) |
8 |
7
|
oveq1d |
|- ( A e. NN -> ( ( H ` A ) x. ( 2 ^ ( ! ` A ) ) ) = ( sum_ b e. ( 1 ... A ) ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) ) |
9 |
|
fzfid |
|- ( A e. NN -> ( 1 ... A ) e. Fin ) |
10 |
|
2rp |
|- 2 e. RR+ |
11 |
|
nnnn0 |
|- ( A e. NN -> A e. NN0 ) |
12 |
11
|
faccld |
|- ( A e. NN -> ( ! ` A ) e. NN ) |
13 |
12
|
nnzd |
|- ( A e. NN -> ( ! ` A ) e. ZZ ) |
14 |
|
rpexpcl |
|- ( ( 2 e. RR+ /\ ( ! ` A ) e. ZZ ) -> ( 2 ^ ( ! ` A ) ) e. RR+ ) |
15 |
10 13 14
|
sylancr |
|- ( A e. NN -> ( 2 ^ ( ! ` A ) ) e. RR+ ) |
16 |
15
|
rpcnd |
|- ( A e. NN -> ( 2 ^ ( ! ` A ) ) e. CC ) |
17 |
|
elfznn |
|- ( b e. ( 1 ... A ) -> b e. NN ) |
18 |
|
fveq2 |
|- ( a = b -> ( ! ` a ) = ( ! ` b ) ) |
19 |
18
|
negeqd |
|- ( a = b -> -u ( ! ` a ) = -u ( ! ` b ) ) |
20 |
19
|
oveq2d |
|- ( a = b -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` b ) ) ) |
21 |
|
ovex |
|- ( 2 ^ -u ( ! ` b ) ) e. _V |
22 |
20 1 21
|
fvmpt |
|- ( b e. NN -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) ) |
23 |
17 22
|
syl |
|- ( b e. ( 1 ... A ) -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) ) |
24 |
23
|
adantl |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) ) |
25 |
17
|
adantl |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> b e. NN ) |
26 |
25
|
nnnn0d |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> b e. NN0 ) |
27 |
26
|
faccld |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` b ) e. NN ) |
28 |
27
|
nnzd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` b ) e. ZZ ) |
29 |
28
|
znegcld |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> -u ( ! ` b ) e. ZZ ) |
30 |
|
rpexpcl |
|- ( ( 2 e. RR+ /\ -u ( ! ` b ) e. ZZ ) -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) |
31 |
10 29 30
|
sylancr |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) |
32 |
31
|
rpcnd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( 2 ^ -u ( ! ` b ) ) e. CC ) |
33 |
24 32
|
eqeltrd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( F ` b ) e. CC ) |
34 |
9 16 33
|
fsummulc1 |
|- ( A e. NN -> ( sum_ b e. ( 1 ... A ) ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) = sum_ b e. ( 1 ... A ) ( ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) ) |
35 |
24
|
oveq1d |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) = ( ( 2 ^ -u ( ! ` b ) ) x. ( 2 ^ ( ! ` A ) ) ) ) |
36 |
13
|
adantr |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` A ) e. ZZ ) |
37 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
38 |
|
expaddz |
|- ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( -u ( ! ` b ) e. ZZ /\ ( ! ` A ) e. ZZ ) ) -> ( 2 ^ ( -u ( ! ` b ) + ( ! ` A ) ) ) = ( ( 2 ^ -u ( ! ` b ) ) x. ( 2 ^ ( ! ` A ) ) ) ) |
39 |
37 38
|
mpan |
|- ( ( -u ( ! ` b ) e. ZZ /\ ( ! ` A ) e. ZZ ) -> ( 2 ^ ( -u ( ! ` b ) + ( ! ` A ) ) ) = ( ( 2 ^ -u ( ! ` b ) ) x. ( 2 ^ ( ! ` A ) ) ) ) |
40 |
29 36 39
|
syl2anc |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( 2 ^ ( -u ( ! ` b ) + ( ! ` A ) ) ) = ( ( 2 ^ -u ( ! ` b ) ) x. ( 2 ^ ( ! ` A ) ) ) ) |
41 |
|
2z |
|- 2 e. ZZ |
42 |
29
|
zcnd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> -u ( ! ` b ) e. CC ) |
43 |
36
|
zcnd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` A ) e. CC ) |
44 |
42 43
|
addcomd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( -u ( ! ` b ) + ( ! ` A ) ) = ( ( ! ` A ) + -u ( ! ` b ) ) ) |
45 |
27
|
nncnd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` b ) e. CC ) |
46 |
43 45
|
negsubd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( ! ` A ) + -u ( ! ` b ) ) = ( ( ! ` A ) - ( ! ` b ) ) ) |
47 |
44 46
|
eqtrd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( -u ( ! ` b ) + ( ! ` A ) ) = ( ( ! ` A ) - ( ! ` b ) ) ) |
48 |
11
|
adantr |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> A e. NN0 ) |
49 |
|
elfzle2 |
|- ( b e. ( 1 ... A ) -> b <_ A ) |
50 |
49
|
adantl |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> b <_ A ) |
51 |
|
facwordi |
|- ( ( b e. NN0 /\ A e. NN0 /\ b <_ A ) -> ( ! ` b ) <_ ( ! ` A ) ) |
52 |
26 48 50 51
|
syl3anc |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` b ) <_ ( ! ` A ) ) |
53 |
27
|
nnnn0d |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` b ) e. NN0 ) |
54 |
48
|
faccld |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` A ) e. NN ) |
55 |
54
|
nnnn0d |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` A ) e. NN0 ) |
56 |
|
nn0sub |
|- ( ( ( ! ` b ) e. NN0 /\ ( ! ` A ) e. NN0 ) -> ( ( ! ` b ) <_ ( ! ` A ) <-> ( ( ! ` A ) - ( ! ` b ) ) e. NN0 ) ) |
57 |
53 55 56
|
syl2anc |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( ! ` b ) <_ ( ! ` A ) <-> ( ( ! ` A ) - ( ! ` b ) ) e. NN0 ) ) |
58 |
52 57
|
mpbid |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( ! ` A ) - ( ! ` b ) ) e. NN0 ) |
59 |
47 58
|
eqeltrd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( -u ( ! ` b ) + ( ! ` A ) ) e. NN0 ) |
60 |
|
zexpcl |
|- ( ( 2 e. ZZ /\ ( -u ( ! ` b ) + ( ! ` A ) ) e. NN0 ) -> ( 2 ^ ( -u ( ! ` b ) + ( ! ` A ) ) ) e. ZZ ) |
61 |
41 59 60
|
sylancr |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( 2 ^ ( -u ( ! ` b ) + ( ! ` A ) ) ) e. ZZ ) |
62 |
40 61
|
eqeltrrd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( 2 ^ -u ( ! ` b ) ) x. ( 2 ^ ( ! ` A ) ) ) e. ZZ ) |
63 |
35 62
|
eqeltrd |
|- ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) e. ZZ ) |
64 |
9 63
|
fsumzcl |
|- ( A e. NN -> sum_ b e. ( 1 ... A ) ( ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) e. ZZ ) |
65 |
34 64
|
eqeltrd |
|- ( A e. NN -> ( sum_ b e. ( 1 ... A ) ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) e. ZZ ) |
66 |
8 65
|
eqeltrd |
|- ( A e. NN -> ( ( H ` A ) x. ( 2 ^ ( ! ` A ) ) ) e. ZZ ) |