| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aaliou3lem.c |
|
| 2 |
|
aaliou3lem.d |
|
| 3 |
|
aaliou3lem.e |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
sumeq1d |
|
| 6 |
|
sumex |
|
| 7 |
5 3 6
|
fvmpt |
|
| 8 |
7
|
oveq1d |
|
| 9 |
|
fzfid |
|
| 10 |
|
2rp |
|
| 11 |
|
nnnn0 |
|
| 12 |
11
|
faccld |
|
| 13 |
12
|
nnzd |
|
| 14 |
|
rpexpcl |
|
| 15 |
10 13 14
|
sylancr |
|
| 16 |
15
|
rpcnd |
|
| 17 |
|
elfznn |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
negeqd |
|
| 20 |
19
|
oveq2d |
|
| 21 |
|
ovex |
|
| 22 |
20 1 21
|
fvmpt |
|
| 23 |
17 22
|
syl |
|
| 24 |
23
|
adantl |
|
| 25 |
17
|
adantl |
|
| 26 |
25
|
nnnn0d |
|
| 27 |
26
|
faccld |
|
| 28 |
27
|
nnzd |
|
| 29 |
28
|
znegcld |
|
| 30 |
|
rpexpcl |
|
| 31 |
10 29 30
|
sylancr |
|
| 32 |
31
|
rpcnd |
|
| 33 |
24 32
|
eqeltrd |
|
| 34 |
9 16 33
|
fsummulc1 |
|
| 35 |
24
|
oveq1d |
|
| 36 |
13
|
adantr |
|
| 37 |
|
2cnne0 |
|
| 38 |
|
expaddz |
|
| 39 |
37 38
|
mpan |
|
| 40 |
29 36 39
|
syl2anc |
|
| 41 |
|
2z |
|
| 42 |
29
|
zcnd |
|
| 43 |
36
|
zcnd |
|
| 44 |
42 43
|
addcomd |
|
| 45 |
27
|
nncnd |
|
| 46 |
43 45
|
negsubd |
|
| 47 |
44 46
|
eqtrd |
|
| 48 |
11
|
adantr |
|
| 49 |
|
elfzle2 |
|
| 50 |
49
|
adantl |
|
| 51 |
|
facwordi |
|
| 52 |
26 48 50 51
|
syl3anc |
|
| 53 |
27
|
nnnn0d |
|
| 54 |
48
|
faccld |
|
| 55 |
54
|
nnnn0d |
|
| 56 |
|
nn0sub |
|
| 57 |
53 55 56
|
syl2anc |
|
| 58 |
52 57
|
mpbid |
|
| 59 |
47 58
|
eqeltrd |
|
| 60 |
|
zexpcl |
|
| 61 |
41 59 60
|
sylancr |
|
| 62 |
40 61
|
eqeltrrd |
|
| 63 |
35 62
|
eqeltrd |
|
| 64 |
9 63
|
fsumzcl |
|
| 65 |
34 64
|
eqeltrd |
|
| 66 |
8 65
|
eqeltrd |
|