Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.c |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) |
2 |
|
aaliou3lem.d |
⊢ 𝐿 = Σ 𝑏 ∈ ℕ ( 𝐹 ‘ 𝑏 ) |
3 |
|
aaliou3lem.e |
⊢ 𝐻 = ( 𝑐 ∈ ℕ ↦ Σ 𝑏 ∈ ( 1 ... 𝑐 ) ( 𝐹 ‘ 𝑏 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( 1 ... 𝑐 ) = ( 1 ... 𝐴 ) ) |
5 |
4
|
sumeq1d |
⊢ ( 𝑐 = 𝐴 → Σ 𝑏 ∈ ( 1 ... 𝑐 ) ( 𝐹 ‘ 𝑏 ) = Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) |
6 |
|
sumex |
⊢ Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) ∈ V |
7 |
5 3 6
|
fvmpt |
⊢ ( 𝐴 ∈ ℕ → ( 𝐻 ‘ 𝐴 ) = Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝐻 ‘ 𝐴 ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) = ( Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) |
9 |
|
fzfid |
⊢ ( 𝐴 ∈ ℕ → ( 1 ... 𝐴 ) ∈ Fin ) |
10 |
|
2rp |
⊢ 2 ∈ ℝ+ |
11 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
12 |
11
|
faccld |
⊢ ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) ∈ ℕ ) |
13 |
12
|
nnzd |
⊢ ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) ∈ ℤ ) |
14 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ! ‘ 𝐴 ) ∈ ℤ ) → ( 2 ↑ ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
15 |
10 13 14
|
sylancr |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
16 |
15
|
rpcnd |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ ( ! ‘ 𝐴 ) ) ∈ ℂ ) |
17 |
|
elfznn |
⊢ ( 𝑏 ∈ ( 1 ... 𝐴 ) → 𝑏 ∈ ℕ ) |
18 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝑏 ) ) |
19 |
18
|
negeqd |
⊢ ( 𝑎 = 𝑏 → - ( ! ‘ 𝑎 ) = - ( ! ‘ 𝑏 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ 𝑏 ) ) ) |
21 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ 𝑏 ) ) ∈ V |
22 |
20 1 21
|
fvmpt |
⊢ ( 𝑏 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) = ( 2 ↑ - ( ! ‘ 𝑏 ) ) ) |
23 |
17 22
|
syl |
⊢ ( 𝑏 ∈ ( 1 ... 𝐴 ) → ( 𝐹 ‘ 𝑏 ) = ( 2 ↑ - ( ! ‘ 𝑏 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 2 ↑ - ( ! ‘ 𝑏 ) ) ) |
25 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → 𝑏 ∈ ℕ ) |
26 |
25
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → 𝑏 ∈ ℕ0 ) |
27 |
26
|
faccld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ! ‘ 𝑏 ) ∈ ℕ ) |
28 |
27
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ! ‘ 𝑏 ) ∈ ℤ ) |
29 |
28
|
znegcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → - ( ! ‘ 𝑏 ) ∈ ℤ ) |
30 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝑏 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝑏 ) ) ∈ ℝ+ ) |
31 |
10 29 30
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝑏 ) ) ∈ ℝ+ ) |
32 |
31
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝑏 ) ) ∈ ℂ ) |
33 |
24 32
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
34 |
9 16 33
|
fsummulc1 |
⊢ ( 𝐴 ∈ ℕ → ( Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) = Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( ( 𝐹 ‘ 𝑏 ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) |
35 |
24
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑏 ) ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) |
36 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℤ ) |
37 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
38 |
|
expaddz |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( - ( ! ‘ 𝑏 ) ∈ ℤ ∧ ( ! ‘ 𝐴 ) ∈ ℤ ) ) → ( 2 ↑ ( - ( ! ‘ 𝑏 ) + ( ! ‘ 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑏 ) ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) |
39 |
37 38
|
mpan |
⊢ ( ( - ( ! ‘ 𝑏 ) ∈ ℤ ∧ ( ! ‘ 𝐴 ) ∈ ℤ ) → ( 2 ↑ ( - ( ! ‘ 𝑏 ) + ( ! ‘ 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑏 ) ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) |
40 |
29 36 39
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑏 ) + ( ! ‘ 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑏 ) ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) |
41 |
|
2z |
⊢ 2 ∈ ℤ |
42 |
29
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → - ( ! ‘ 𝑏 ) ∈ ℂ ) |
43 |
36
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℂ ) |
44 |
42 43
|
addcomd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( - ( ! ‘ 𝑏 ) + ( ! ‘ 𝐴 ) ) = ( ( ! ‘ 𝐴 ) + - ( ! ‘ 𝑏 ) ) ) |
45 |
27
|
nncnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ! ‘ 𝑏 ) ∈ ℂ ) |
46 |
43 45
|
negsubd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ( ! ‘ 𝐴 ) + - ( ! ‘ 𝑏 ) ) = ( ( ! ‘ 𝐴 ) − ( ! ‘ 𝑏 ) ) ) |
47 |
44 46
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( - ( ! ‘ 𝑏 ) + ( ! ‘ 𝐴 ) ) = ( ( ! ‘ 𝐴 ) − ( ! ‘ 𝑏 ) ) ) |
48 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → 𝐴 ∈ ℕ0 ) |
49 |
|
elfzle2 |
⊢ ( 𝑏 ∈ ( 1 ... 𝐴 ) → 𝑏 ≤ 𝐴 ) |
50 |
49
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → 𝑏 ≤ 𝐴 ) |
51 |
|
facwordi |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝑏 ≤ 𝐴 ) → ( ! ‘ 𝑏 ) ≤ ( ! ‘ 𝐴 ) ) |
52 |
26 48 50 51
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ! ‘ 𝑏 ) ≤ ( ! ‘ 𝐴 ) ) |
53 |
27
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ! ‘ 𝑏 ) ∈ ℕ0 ) |
54 |
48
|
faccld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℕ ) |
55 |
54
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℕ0 ) |
56 |
|
nn0sub |
⊢ ( ( ( ! ‘ 𝑏 ) ∈ ℕ0 ∧ ( ! ‘ 𝐴 ) ∈ ℕ0 ) → ( ( ! ‘ 𝑏 ) ≤ ( ! ‘ 𝐴 ) ↔ ( ( ! ‘ 𝐴 ) − ( ! ‘ 𝑏 ) ) ∈ ℕ0 ) ) |
57 |
53 55 56
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ( ! ‘ 𝑏 ) ≤ ( ! ‘ 𝐴 ) ↔ ( ( ! ‘ 𝐴 ) − ( ! ‘ 𝑏 ) ) ∈ ℕ0 ) ) |
58 |
52 57
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ( ! ‘ 𝐴 ) − ( ! ‘ 𝑏 ) ) ∈ ℕ0 ) |
59 |
47 58
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( - ( ! ‘ 𝑏 ) + ( ! ‘ 𝐴 ) ) ∈ ℕ0 ) |
60 |
|
zexpcl |
⊢ ( ( 2 ∈ ℤ ∧ ( - ( ! ‘ 𝑏 ) + ( ! ‘ 𝐴 ) ) ∈ ℕ0 ) → ( 2 ↑ ( - ( ! ‘ 𝑏 ) + ( ! ‘ 𝐴 ) ) ) ∈ ℤ ) |
61 |
41 59 60
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑏 ) + ( ! ‘ 𝐴 ) ) ) ∈ ℤ ) |
62 |
40 61
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝑏 ) ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ∈ ℤ ) |
63 |
35 62
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ∈ ℤ ) |
64 |
9 63
|
fsumzcl |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( ( 𝐹 ‘ 𝑏 ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ∈ ℤ ) |
65 |
34 64
|
eqeltrd |
⊢ ( 𝐴 ∈ ℕ → ( Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ∈ ℤ ) |
66 |
8 65
|
eqeltrd |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝐻 ‘ 𝐴 ) · ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ∈ ℤ ) |