| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.c | ⊢ 𝐹  =  ( 𝑎  ∈  ℕ  ↦  ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) | 
						
							| 2 |  | aaliou3lem.d | ⊢ 𝐿  =  Σ 𝑏  ∈  ℕ ( 𝐹 ‘ 𝑏 ) | 
						
							| 3 |  | aaliou3lem.e | ⊢ 𝐻  =  ( 𝑐  ∈  ℕ  ↦  Σ 𝑏  ∈  ( 1 ... 𝑐 ) ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑐  =  𝐴  →  ( 1 ... 𝑐 )  =  ( 1 ... 𝐴 ) ) | 
						
							| 5 | 4 | sumeq1d | ⊢ ( 𝑐  =  𝐴  →  Σ 𝑏  ∈  ( 1 ... 𝑐 ) ( 𝐹 ‘ 𝑏 )  =  Σ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 6 |  | sumex | ⊢ Σ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 )  ∈  V | 
						
							| 7 | 5 3 6 | fvmpt | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐻 ‘ 𝐴 )  =  Σ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 𝐻 ‘ 𝐴 )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) )  =  ( Σ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) | 
						
							| 9 |  | fzfid | ⊢ ( 𝐴  ∈  ℕ  →  ( 1 ... 𝐴 )  ∈  Fin ) | 
						
							| 10 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 11 |  | nnnn0 | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℕ0 ) | 
						
							| 12 | 11 | faccld | ⊢ ( 𝐴  ∈  ℕ  →  ( ! ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 13 | 12 | nnzd | ⊢ ( 𝐴  ∈  ℕ  →  ( ! ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 14 |  | rpexpcl | ⊢ ( ( 2  ∈  ℝ+  ∧  ( ! ‘ 𝐴 )  ∈  ℤ )  →  ( 2 ↑ ( ! ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 15 | 10 13 14 | sylancr | ⊢ ( 𝐴  ∈  ℕ  →  ( 2 ↑ ( ! ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 16 | 15 | rpcnd | ⊢ ( 𝐴  ∈  ℕ  →  ( 2 ↑ ( ! ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 17 |  | elfznn | ⊢ ( 𝑏  ∈  ( 1 ... 𝐴 )  →  𝑏  ∈  ℕ ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑎  =  𝑏  →  ( ! ‘ 𝑎 )  =  ( ! ‘ 𝑏 ) ) | 
						
							| 19 | 18 | negeqd | ⊢ ( 𝑎  =  𝑏  →  - ( ! ‘ 𝑎 )  =  - ( ! ‘ 𝑏 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝑎  =  𝑏  →  ( 2 ↑ - ( ! ‘ 𝑎 ) )  =  ( 2 ↑ - ( ! ‘ 𝑏 ) ) ) | 
						
							| 21 |  | ovex | ⊢ ( 2 ↑ - ( ! ‘ 𝑏 ) )  ∈  V | 
						
							| 22 | 20 1 21 | fvmpt | ⊢ ( 𝑏  ∈  ℕ  →  ( 𝐹 ‘ 𝑏 )  =  ( 2 ↑ - ( ! ‘ 𝑏 ) ) ) | 
						
							| 23 | 17 22 | syl | ⊢ ( 𝑏  ∈  ( 1 ... 𝐴 )  →  ( 𝐹 ‘ 𝑏 )  =  ( 2 ↑ - ( ! ‘ 𝑏 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( 𝐹 ‘ 𝑏 )  =  ( 2 ↑ - ( ! ‘ 𝑏 ) ) ) | 
						
							| 25 | 17 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  𝑏  ∈  ℕ ) | 
						
							| 26 | 25 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  𝑏  ∈  ℕ0 ) | 
						
							| 27 | 26 | faccld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ! ‘ 𝑏 )  ∈  ℕ ) | 
						
							| 28 | 27 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ! ‘ 𝑏 )  ∈  ℤ ) | 
						
							| 29 | 28 | znegcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  - ( ! ‘ 𝑏 )  ∈  ℤ ) | 
						
							| 30 |  | rpexpcl | ⊢ ( ( 2  ∈  ℝ+  ∧  - ( ! ‘ 𝑏 )  ∈  ℤ )  →  ( 2 ↑ - ( ! ‘ 𝑏 ) )  ∈  ℝ+ ) | 
						
							| 31 | 10 29 30 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( 2 ↑ - ( ! ‘ 𝑏 ) )  ∈  ℝ+ ) | 
						
							| 32 | 31 | rpcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( 2 ↑ - ( ! ‘ 𝑏 ) )  ∈  ℂ ) | 
						
							| 33 | 24 32 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( 𝐹 ‘ 𝑏 )  ∈  ℂ ) | 
						
							| 34 | 9 16 33 | fsummulc1 | ⊢ ( 𝐴  ∈  ℕ  →  ( Σ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) )  =  Σ 𝑏  ∈  ( 1 ... 𝐴 ) ( ( 𝐹 ‘ 𝑏 )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) | 
						
							| 35 | 24 | oveq1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ( 𝐹 ‘ 𝑏 )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝑏 ) )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) | 
						
							| 36 | 13 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 37 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 38 |  | expaddz | ⊢ ( ( ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( - ( ! ‘ 𝑏 )  ∈  ℤ  ∧  ( ! ‘ 𝐴 )  ∈  ℤ ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑏 )  +  ( ! ‘ 𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝑏 ) )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) | 
						
							| 39 | 37 38 | mpan | ⊢ ( ( - ( ! ‘ 𝑏 )  ∈  ℤ  ∧  ( ! ‘ 𝐴 )  ∈  ℤ )  →  ( 2 ↑ ( - ( ! ‘ 𝑏 )  +  ( ! ‘ 𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝑏 ) )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) | 
						
							| 40 | 29 36 39 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑏 )  +  ( ! ‘ 𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝑏 ) )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) ) ) | 
						
							| 41 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 42 | 29 | zcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  - ( ! ‘ 𝑏 )  ∈  ℂ ) | 
						
							| 43 | 36 | zcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 44 | 42 43 | addcomd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( - ( ! ‘ 𝑏 )  +  ( ! ‘ 𝐴 ) )  =  ( ( ! ‘ 𝐴 )  +  - ( ! ‘ 𝑏 ) ) ) | 
						
							| 45 | 27 | nncnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ! ‘ 𝑏 )  ∈  ℂ ) | 
						
							| 46 | 43 45 | negsubd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ( ! ‘ 𝐴 )  +  - ( ! ‘ 𝑏 ) )  =  ( ( ! ‘ 𝐴 )  −  ( ! ‘ 𝑏 ) ) ) | 
						
							| 47 | 44 46 | eqtrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( - ( ! ‘ 𝑏 )  +  ( ! ‘ 𝐴 ) )  =  ( ( ! ‘ 𝐴 )  −  ( ! ‘ 𝑏 ) ) ) | 
						
							| 48 | 11 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 49 |  | elfzle2 | ⊢ ( 𝑏  ∈  ( 1 ... 𝐴 )  →  𝑏  ≤  𝐴 ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  𝑏  ≤  𝐴 ) | 
						
							| 51 |  | facwordi | ⊢ ( ( 𝑏  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝑏  ≤  𝐴 )  →  ( ! ‘ 𝑏 )  ≤  ( ! ‘ 𝐴 ) ) | 
						
							| 52 | 26 48 50 51 | syl3anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ! ‘ 𝑏 )  ≤  ( ! ‘ 𝐴 ) ) | 
						
							| 53 | 27 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ! ‘ 𝑏 )  ∈  ℕ0 ) | 
						
							| 54 | 48 | faccld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 55 | 54 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 56 |  | nn0sub | ⊢ ( ( ( ! ‘ 𝑏 )  ∈  ℕ0  ∧  ( ! ‘ 𝐴 )  ∈  ℕ0 )  →  ( ( ! ‘ 𝑏 )  ≤  ( ! ‘ 𝐴 )  ↔  ( ( ! ‘ 𝐴 )  −  ( ! ‘ 𝑏 ) )  ∈  ℕ0 ) ) | 
						
							| 57 | 53 55 56 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ( ! ‘ 𝑏 )  ≤  ( ! ‘ 𝐴 )  ↔  ( ( ! ‘ 𝐴 )  −  ( ! ‘ 𝑏 ) )  ∈  ℕ0 ) ) | 
						
							| 58 | 52 57 | mpbid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ( ! ‘ 𝐴 )  −  ( ! ‘ 𝑏 ) )  ∈  ℕ0 ) | 
						
							| 59 | 47 58 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( - ( ! ‘ 𝑏 )  +  ( ! ‘ 𝐴 ) )  ∈  ℕ0 ) | 
						
							| 60 |  | zexpcl | ⊢ ( ( 2  ∈  ℤ  ∧  ( - ( ! ‘ 𝑏 )  +  ( ! ‘ 𝐴 ) )  ∈  ℕ0 )  →  ( 2 ↑ ( - ( ! ‘ 𝑏 )  +  ( ! ‘ 𝐴 ) ) )  ∈  ℤ ) | 
						
							| 61 | 41 59 60 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( 2 ↑ ( - ( ! ‘ 𝑏 )  +  ( ! ‘ 𝐴 ) ) )  ∈  ℤ ) | 
						
							| 62 | 40 61 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝑏 ) )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) )  ∈  ℤ ) | 
						
							| 63 | 35 62 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑏  ∈  ( 1 ... 𝐴 ) )  →  ( ( 𝐹 ‘ 𝑏 )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) )  ∈  ℤ ) | 
						
							| 64 | 9 63 | fsumzcl | ⊢ ( 𝐴  ∈  ℕ  →  Σ 𝑏  ∈  ( 1 ... 𝐴 ) ( ( 𝐹 ‘ 𝑏 )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) )  ∈  ℤ ) | 
						
							| 65 | 34 64 | eqeltrd | ⊢ ( 𝐴  ∈  ℕ  →  ( Σ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) )  ∈  ℤ ) | 
						
							| 66 | 8 65 | eqeltrd | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 𝐻 ‘ 𝐴 )  ·  ( 2 ↑ ( ! ‘ 𝐴 ) ) )  ∈  ℤ ) |