| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aaliou3lem.c |
|- F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) |
| 2 |
|
aaliou3lem.d |
|- L = sum_ b e. NN ( F ` b ) |
| 3 |
|
aaliou3lem.e |
|- H = ( c e. NN |-> sum_ b e. ( 1 ... c ) ( F ` b ) ) |
| 4 |
|
peano2nn |
|- ( A e. NN -> ( A + 1 ) e. NN ) |
| 5 |
|
eqid |
|- ( c e. ( ZZ>= ` ( A + 1 ) ) |-> ( ( 2 ^ -u ( ! ` ( A + 1 ) ) ) x. ( ( 1 / 2 ) ^ ( c - ( A + 1 ) ) ) ) ) = ( c e. ( ZZ>= ` ( A + 1 ) ) |-> ( ( 2 ^ -u ( ! ` ( A + 1 ) ) ) x. ( ( 1 / 2 ) ^ ( c - ( A + 1 ) ) ) ) ) |
| 6 |
5 1
|
aaliou3lem3 |
|- ( ( A + 1 ) e. NN -> ( seq ( A + 1 ) ( + , F ) e. dom ~~> /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
| 7 |
|
3simpc |
|- ( ( seq ( A + 1 ) ( + , F ) e. dom ~~> /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) -> ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
| 8 |
4 6 7
|
3syl |
|- ( A e. NN -> ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
| 9 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 10 |
|
ax-1cn |
|- 1 e. CC |
| 11 |
|
pncan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
| 12 |
9 10 11
|
sylancl |
|- ( A e. NN -> ( ( A + 1 ) - 1 ) = A ) |
| 13 |
12
|
oveq2d |
|- ( A e. NN -> ( 1 ... ( ( A + 1 ) - 1 ) ) = ( 1 ... A ) ) |
| 14 |
13
|
sumeq1d |
|- ( A e. NN -> sum_ b e. ( 1 ... ( ( A + 1 ) - 1 ) ) ( F ` b ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) |
| 15 |
14
|
oveq1d |
|- ( A e. NN -> ( sum_ b e. ( 1 ... ( ( A + 1 ) - 1 ) ) ( F ` b ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) = ( sum_ b e. ( 1 ... A ) ( F ` b ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) ) |
| 16 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 17 |
|
eqid |
|- ( ZZ>= ` ( A + 1 ) ) = ( ZZ>= ` ( A + 1 ) ) |
| 18 |
|
eqidd |
|- ( ( A e. NN /\ b e. NN ) -> ( F ` b ) = ( F ` b ) ) |
| 19 |
|
fveq2 |
|- ( a = b -> ( ! ` a ) = ( ! ` b ) ) |
| 20 |
19
|
negeqd |
|- ( a = b -> -u ( ! ` a ) = -u ( ! ` b ) ) |
| 21 |
20
|
oveq2d |
|- ( a = b -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` b ) ) ) |
| 22 |
|
ovex |
|- ( 2 ^ -u ( ! ` b ) ) e. _V |
| 23 |
21 1 22
|
fvmpt |
|- ( b e. NN -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) ) |
| 24 |
|
2rp |
|- 2 e. RR+ |
| 25 |
|
nnnn0 |
|- ( b e. NN -> b e. NN0 ) |
| 26 |
|
faccl |
|- ( b e. NN0 -> ( ! ` b ) e. NN ) |
| 27 |
25 26
|
syl |
|- ( b e. NN -> ( ! ` b ) e. NN ) |
| 28 |
27
|
nnzd |
|- ( b e. NN -> ( ! ` b ) e. ZZ ) |
| 29 |
28
|
znegcld |
|- ( b e. NN -> -u ( ! ` b ) e. ZZ ) |
| 30 |
|
rpexpcl |
|- ( ( 2 e. RR+ /\ -u ( ! ` b ) e. ZZ ) -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) |
| 31 |
24 29 30
|
sylancr |
|- ( b e. NN -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) |
| 32 |
31
|
rpcnd |
|- ( b e. NN -> ( 2 ^ -u ( ! ` b ) ) e. CC ) |
| 33 |
23 32
|
eqeltrd |
|- ( b e. NN -> ( F ` b ) e. CC ) |
| 34 |
33
|
adantl |
|- ( ( A e. NN /\ b e. NN ) -> ( F ` b ) e. CC ) |
| 35 |
|
1nn |
|- 1 e. NN |
| 36 |
|
eqid |
|- ( c e. ( ZZ>= ` 1 ) |-> ( ( 2 ^ -u ( ! ` 1 ) ) x. ( ( 1 / 2 ) ^ ( c - 1 ) ) ) ) = ( c e. ( ZZ>= ` 1 ) |-> ( ( 2 ^ -u ( ! ` 1 ) ) x. ( ( 1 / 2 ) ^ ( c - 1 ) ) ) ) |
| 37 |
36 1
|
aaliou3lem3 |
|- ( 1 e. NN -> ( seq 1 ( + , F ) e. dom ~~> /\ sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` 1 ) ) ) ) ) |
| 38 |
37
|
simp1d |
|- ( 1 e. NN -> seq 1 ( + , F ) e. dom ~~> ) |
| 39 |
35 38
|
mp1i |
|- ( A e. NN -> seq 1 ( + , F ) e. dom ~~> ) |
| 40 |
16 17 4 18 34 39
|
isumsplit |
|- ( A e. NN -> sum_ b e. NN ( F ` b ) = ( sum_ b e. ( 1 ... ( ( A + 1 ) - 1 ) ) ( F ` b ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) ) |
| 41 |
|
oveq2 |
|- ( c = A -> ( 1 ... c ) = ( 1 ... A ) ) |
| 42 |
41
|
sumeq1d |
|- ( c = A -> sum_ b e. ( 1 ... c ) ( F ` b ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) |
| 43 |
|
sumex |
|- sum_ b e. ( 1 ... A ) ( F ` b ) e. _V |
| 44 |
42 3 43
|
fvmpt |
|- ( A e. NN -> ( H ` A ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) |
| 45 |
44
|
oveq1d |
|- ( A e. NN -> ( ( H ` A ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) = ( sum_ b e. ( 1 ... A ) ( F ` b ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) ) |
| 46 |
15 40 45
|
3eqtr4rd |
|- ( A e. NN -> ( ( H ` A ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) = sum_ b e. NN ( F ` b ) ) |
| 47 |
46 2
|
eqtr4di |
|- ( A e. NN -> ( ( H ` A ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) = L ) |
| 48 |
1 2 3
|
aaliou3lem4 |
|- L e. RR |
| 49 |
48
|
recni |
|- L e. CC |
| 50 |
49
|
a1i |
|- ( A e. NN -> L e. CC ) |
| 51 |
1 2 3
|
aaliou3lem5 |
|- ( A e. NN -> ( H ` A ) e. RR ) |
| 52 |
51
|
recnd |
|- ( A e. NN -> ( H ` A ) e. CC ) |
| 53 |
6
|
simp2d |
|- ( ( A + 1 ) e. NN -> sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ ) |
| 54 |
4 53
|
syl |
|- ( A e. NN -> sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ ) |
| 55 |
54
|
rpcnd |
|- ( A e. NN -> sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. CC ) |
| 56 |
50 52 55
|
subaddd |
|- ( A e. NN -> ( ( L - ( H ` A ) ) = sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <-> ( ( H ` A ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) = L ) ) |
| 57 |
47 56
|
mpbird |
|- ( A e. NN -> ( L - ( H ` A ) ) = sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) |
| 58 |
57
|
eqcomd |
|- ( A e. NN -> sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) = ( L - ( H ` A ) ) ) |
| 59 |
|
eleq1 |
|- ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) = ( L - ( H ` A ) ) -> ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ <-> ( L - ( H ` A ) ) e. RR+ ) ) |
| 60 |
|
breq1 |
|- ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) = ( L - ( H ` A ) ) -> ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) <-> ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
| 61 |
59 60
|
anbi12d |
|- ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) = ( L - ( H ` A ) ) -> ( ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) <-> ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) |
| 62 |
58 61
|
syl |
|- ( A e. NN -> ( ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) <-> ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) |
| 63 |
51
|
adantr |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( H ` A ) e. RR ) |
| 64 |
|
simprl |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( L - ( H ` A ) ) e. RR+ ) |
| 65 |
|
difrp |
|- ( ( ( H ` A ) e. RR /\ L e. RR ) -> ( ( H ` A ) < L <-> ( L - ( H ` A ) ) e. RR+ ) ) |
| 66 |
63 48 65
|
sylancl |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) < L <-> ( L - ( H ` A ) ) e. RR+ ) ) |
| 67 |
64 66
|
mpbird |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( H ` A ) < L ) |
| 68 |
63 67
|
ltned |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( H ` A ) =/= L ) |
| 69 |
|
nnnn0 |
|- ( ( A + 1 ) e. NN -> ( A + 1 ) e. NN0 ) |
| 70 |
|
faccl |
|- ( ( A + 1 ) e. NN0 -> ( ! ` ( A + 1 ) ) e. NN ) |
| 71 |
4 69 70
|
3syl |
|- ( A e. NN -> ( ! ` ( A + 1 ) ) e. NN ) |
| 72 |
71
|
nnzd |
|- ( A e. NN -> ( ! ` ( A + 1 ) ) e. ZZ ) |
| 73 |
72
|
znegcld |
|- ( A e. NN -> -u ( ! ` ( A + 1 ) ) e. ZZ ) |
| 74 |
|
rpexpcl |
|- ( ( 2 e. RR+ /\ -u ( ! ` ( A + 1 ) ) e. ZZ ) -> ( 2 ^ -u ( ! ` ( A + 1 ) ) ) e. RR+ ) |
| 75 |
24 73 74
|
sylancr |
|- ( A e. NN -> ( 2 ^ -u ( ! ` ( A + 1 ) ) ) e. RR+ ) |
| 76 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ ( 2 ^ -u ( ! ` ( A + 1 ) ) ) e. RR+ ) -> ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) e. RR+ ) |
| 77 |
24 75 76
|
sylancr |
|- ( A e. NN -> ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) e. RR+ ) |
| 78 |
77
|
adantr |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) e. RR+ ) |
| 79 |
78
|
rpred |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) e. RR ) |
| 80 |
63 79
|
resubcld |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) - ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) e. RR ) |
| 81 |
48
|
a1i |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> L e. RR ) |
| 82 |
63 78
|
ltsubrpd |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) - ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) < ( H ` A ) ) |
| 83 |
80 63 81 82 67
|
lttrd |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) - ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) < L ) |
| 84 |
80 81 83
|
ltled |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) - ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) <_ L ) |
| 85 |
|
simprr |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) |
| 86 |
81 63 79
|
lesubadd2d |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) <-> L <_ ( ( H ` A ) + ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) |
| 87 |
85 86
|
mpbid |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> L <_ ( ( H ` A ) + ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
| 88 |
81 63 79
|
absdifled |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) <-> ( ( ( H ` A ) - ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) <_ L /\ L <_ ( ( H ` A ) + ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) ) |
| 89 |
84 87 88
|
mpbir2and |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) |
| 90 |
68 89
|
jca |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) =/= L /\ ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
| 91 |
90
|
ex |
|- ( A e. NN -> ( ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) -> ( ( H ` A ) =/= L /\ ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) |
| 92 |
62 91
|
sylbid |
|- ( A e. NN -> ( ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) -> ( ( H ` A ) =/= L /\ ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) |
| 93 |
8 92
|
mpd |
|- ( A e. NN -> ( ( H ` A ) =/= L /\ ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |