| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.c | ⊢ 𝐹  =  ( 𝑎  ∈  ℕ  ↦  ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) | 
						
							| 2 |  | aaliou3lem.d | ⊢ 𝐿  =  Σ 𝑏  ∈  ℕ ( 𝐹 ‘ 𝑏 ) | 
						
							| 3 |  | aaliou3lem.e | ⊢ 𝐻  =  ( 𝑐  ∈  ℕ  ↦  Σ 𝑏  ∈  ( 1 ... 𝑐 ) ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 4 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 5 | 4 | sumeq1i | ⊢ Σ 𝑏  ∈  ℕ ( 𝐹 ‘ 𝑏 )  =  Σ 𝑏  ∈  ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 ) | 
						
							| 6 | 2 5 | eqtri | ⊢ 𝐿  =  Σ 𝑏  ∈  ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 ) | 
						
							| 7 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 8 |  | eqid | ⊢ ( 𝑐  ∈  ( ℤ≥ ‘ 1 )  ↦  ( ( 2 ↑ - ( ! ‘ 1 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑐  −  1 ) ) ) )  =  ( 𝑐  ∈  ( ℤ≥ ‘ 1 )  ↦  ( ( 2 ↑ - ( ! ‘ 1 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑐  −  1 ) ) ) ) | 
						
							| 9 | 8 1 | aaliou3lem3 | ⊢ ( 1  ∈  ℕ  →  ( seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝   ∧  Σ 𝑏  ∈  ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 )  ∈  ℝ+  ∧  Σ 𝑏  ∈  ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 )  ≤  ( 2  ·  ( 2 ↑ - ( ! ‘ 1 ) ) ) ) ) | 
						
							| 10 | 9 | simp2d | ⊢ ( 1  ∈  ℕ  →  Σ 𝑏  ∈  ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 )  ∈  ℝ+ ) | 
						
							| 11 |  | rpre | ⊢ ( Σ 𝑏  ∈  ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 )  ∈  ℝ+  →  Σ 𝑏  ∈  ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 )  ∈  ℝ ) | 
						
							| 12 | 7 10 11 | mp2b | ⊢ Σ 𝑏  ∈  ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 )  ∈  ℝ | 
						
							| 13 | 6 12 | eqeltri | ⊢ 𝐿  ∈  ℝ |