Metamath Proof Explorer


Theorem aaliou3lem4

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.c 𝐹 = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) )
aaliou3lem.d 𝐿 = Σ 𝑏 ∈ ℕ ( 𝐹𝑏 )
aaliou3lem.e 𝐻 = ( 𝑐 ∈ ℕ ↦ Σ 𝑏 ∈ ( 1 ... 𝑐 ) ( 𝐹𝑏 ) )
Assertion aaliou3lem4 𝐿 ∈ ℝ

Proof

Step Hyp Ref Expression
1 aaliou3lem.c 𝐹 = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) )
2 aaliou3lem.d 𝐿 = Σ 𝑏 ∈ ℕ ( 𝐹𝑏 )
3 aaliou3lem.e 𝐻 = ( 𝑐 ∈ ℕ ↦ Σ 𝑏 ∈ ( 1 ... 𝑐 ) ( 𝐹𝑏 ) )
4 nnuz ℕ = ( ℤ ‘ 1 )
5 4 sumeq1i Σ 𝑏 ∈ ℕ ( 𝐹𝑏 ) = Σ 𝑏 ∈ ( ℤ ‘ 1 ) ( 𝐹𝑏 )
6 2 5 eqtri 𝐿 = Σ 𝑏 ∈ ( ℤ ‘ 1 ) ( 𝐹𝑏 )
7 1nn 1 ∈ ℕ
8 eqid ( 𝑐 ∈ ( ℤ ‘ 1 ) ↦ ( ( 2 ↑ - ( ! ‘ 1 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 1 ) ) ) ) = ( 𝑐 ∈ ( ℤ ‘ 1 ) ↦ ( ( 2 ↑ - ( ! ‘ 1 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 1 ) ) ) )
9 8 1 aaliou3lem3 ( 1 ∈ ℕ → ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ Σ 𝑏 ∈ ( ℤ ‘ 1 ) ( 𝐹𝑏 ) ∈ ℝ+ ∧ Σ 𝑏 ∈ ( ℤ ‘ 1 ) ( 𝐹𝑏 ) ≤ ( 2 · ( 2 ↑ - ( ! ‘ 1 ) ) ) ) )
10 9 simp2d ( 1 ∈ ℕ → Σ 𝑏 ∈ ( ℤ ‘ 1 ) ( 𝐹𝑏 ) ∈ ℝ+ )
11 rpre ( Σ 𝑏 ∈ ( ℤ ‘ 1 ) ( 𝐹𝑏 ) ∈ ℝ+ → Σ 𝑏 ∈ ( ℤ ‘ 1 ) ( 𝐹𝑏 ) ∈ ℝ )
12 7 10 11 mp2b Σ 𝑏 ∈ ( ℤ ‘ 1 ) ( 𝐹𝑏 ) ∈ ℝ
13 6 12 eqeltri 𝐿 ∈ ℝ