Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.c |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) |
2 |
|
aaliou3lem.d |
⊢ 𝐿 = Σ 𝑏 ∈ ℕ ( 𝐹 ‘ 𝑏 ) |
3 |
|
aaliou3lem.e |
⊢ 𝐻 = ( 𝑐 ∈ ℕ ↦ Σ 𝑏 ∈ ( 1 ... 𝑐 ) ( 𝐹 ‘ 𝑏 ) ) |
4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
5 |
4
|
sumeq1i |
⊢ Σ 𝑏 ∈ ℕ ( 𝐹 ‘ 𝑏 ) = Σ 𝑏 ∈ ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 ) |
6 |
2 5
|
eqtri |
⊢ 𝐿 = Σ 𝑏 ∈ ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 ) |
7 |
|
1nn |
⊢ 1 ∈ ℕ |
8 |
|
eqid |
⊢ ( 𝑐 ∈ ( ℤ≥ ‘ 1 ) ↦ ( ( 2 ↑ - ( ! ‘ 1 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 1 ) ) ) ) = ( 𝑐 ∈ ( ℤ≥ ‘ 1 ) ↦ ( ( 2 ↑ - ( ! ‘ 1 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 1 ) ) ) ) |
9 |
8 1
|
aaliou3lem3 |
⊢ ( 1 ∈ ℕ → ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ Σ 𝑏 ∈ ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 ) ∈ ℝ+ ∧ Σ 𝑏 ∈ ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 ) ≤ ( 2 · ( 2 ↑ - ( ! ‘ 1 ) ) ) ) ) |
10 |
9
|
simp2d |
⊢ ( 1 ∈ ℕ → Σ 𝑏 ∈ ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 ) ∈ ℝ+ ) |
11 |
|
rpre |
⊢ ( Σ 𝑏 ∈ ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 ) ∈ ℝ+ → Σ 𝑏 ∈ ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
12 |
7 10 11
|
mp2b |
⊢ Σ 𝑏 ∈ ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑏 ) ∈ ℝ |
13 |
6 12
|
eqeltri |
⊢ 𝐿 ∈ ℝ |