Metamath Proof Explorer


Theorem aaliou3lem3

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.a 𝐺 = ( 𝑐 ∈ ( ℤ𝐴 ) ↦ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐𝐴 ) ) ) )
aaliou3lem.b 𝐹 = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) )
Assertion aaliou3lem3 ( 𝐴 ∈ ℕ → ( seq 𝐴 ( + , 𝐹 ) ∈ dom ⇝ ∧ Σ 𝑏 ∈ ( ℤ𝐴 ) ( 𝐹𝑏 ) ∈ ℝ+ ∧ Σ 𝑏 ∈ ( ℤ𝐴 ) ( 𝐹𝑏 ) ≤ ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 aaliou3lem.a 𝐺 = ( 𝑐 ∈ ( ℤ𝐴 ) ↦ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐𝐴 ) ) ) )
2 aaliou3lem.b 𝐹 = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) )
3 eqid ( ℤ𝐴 ) = ( ℤ𝐴 )
4 nnz ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ )
5 uzid ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ𝐴 ) )
6 4 5 syl ( 𝐴 ∈ ℕ → 𝐴 ∈ ( ℤ𝐴 ) )
7 1 aaliou3lem1 ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → ( 𝐺𝑏 ) ∈ ℝ )
8 1 2 aaliou3lem2 ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → ( 𝐹𝑏 ) ∈ ( 0 (,] ( 𝐺𝑏 ) ) )
9 0xr 0 ∈ ℝ*
10 elioc2 ( ( 0 ∈ ℝ* ∧ ( 𝐺𝑏 ) ∈ ℝ ) → ( ( 𝐹𝑏 ) ∈ ( 0 (,] ( 𝐺𝑏 ) ) ↔ ( ( 𝐹𝑏 ) ∈ ℝ ∧ 0 < ( 𝐹𝑏 ) ∧ ( 𝐹𝑏 ) ≤ ( 𝐺𝑏 ) ) ) )
11 9 7 10 sylancr ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → ( ( 𝐹𝑏 ) ∈ ( 0 (,] ( 𝐺𝑏 ) ) ↔ ( ( 𝐹𝑏 ) ∈ ℝ ∧ 0 < ( 𝐹𝑏 ) ∧ ( 𝐹𝑏 ) ≤ ( 𝐺𝑏 ) ) ) )
12 8 11 mpbid ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → ( ( 𝐹𝑏 ) ∈ ℝ ∧ 0 < ( 𝐹𝑏 ) ∧ ( 𝐹𝑏 ) ≤ ( 𝐺𝑏 ) ) )
13 12 simp1d ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → ( 𝐹𝑏 ) ∈ ℝ )
14 halfcn ( 1 / 2 ) ∈ ℂ
15 14 a1i ( 𝐴 ∈ ℕ → ( 1 / 2 ) ∈ ℂ )
16 halfre ( 1 / 2 ) ∈ ℝ
17 halfgt0 0 < ( 1 / 2 )
18 16 17 elrpii ( 1 / 2 ) ∈ ℝ+
19 rprege0 ( ( 1 / 2 ) ∈ ℝ+ → ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) )
20 absid ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) )
21 18 19 20 mp2b ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 )
22 halflt1 ( 1 / 2 ) < 1
23 21 22 eqbrtri ( abs ‘ ( 1 / 2 ) ) < 1
24 23 a1i ( 𝐴 ∈ ℕ → ( abs ‘ ( 1 / 2 ) ) < 1 )
25 2rp 2 ∈ ℝ+
26 nnnn0 ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 )
27 26 faccld ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) ∈ ℕ )
28 27 nnzd ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) ∈ ℤ )
29 28 znegcld ( 𝐴 ∈ ℕ → - ( ! ‘ 𝐴 ) ∈ ℤ )
30 rpexpcl ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝐴 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ )
31 25 29 30 sylancr ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ )
32 31 rpcnd ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ )
33 4 15 24 32 1 geolim3 ( 𝐴 ∈ ℕ → seq 𝐴 ( + , 𝐺 ) ⇝ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) )
34 seqex seq 𝐴 ( + , 𝐺 ) ∈ V
35 ovex ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) ∈ V
36 34 35 breldm ( seq 𝐴 ( + , 𝐺 ) ⇝ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) → seq 𝐴 ( + , 𝐺 ) ∈ dom ⇝ )
37 33 36 syl ( 𝐴 ∈ ℕ → seq 𝐴 ( + , 𝐺 ) ∈ dom ⇝ )
38 12 simp2d ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → 0 < ( 𝐹𝑏 ) )
39 13 38 elrpd ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → ( 𝐹𝑏 ) ∈ ℝ+ )
40 39 rpge0d ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → 0 ≤ ( 𝐹𝑏 ) )
41 12 simp3d ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → ( 𝐹𝑏 ) ≤ ( 𝐺𝑏 ) )
42 3 6 7 13 37 40 41 cvgcmp ( 𝐴 ∈ ℕ → seq 𝐴 ( + , 𝐹 ) ∈ dom ⇝ )
43 eqidd ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → ( 𝐹𝑏 ) = ( 𝐹𝑏 ) )
44 3 3 6 43 39 42 isumrpcl ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( ℤ𝐴 ) ( 𝐹𝑏 ) ∈ ℝ+ )
45 eqidd ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → ( 𝐺𝑏 ) = ( 𝐺𝑏 ) )
46 3 4 43 13 45 7 41 42 37 isumle ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( ℤ𝐴 ) ( 𝐹𝑏 ) ≤ Σ 𝑏 ∈ ( ℤ𝐴 ) ( 𝐺𝑏 ) )
47 7 recnd ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ𝐴 ) ) → ( 𝐺𝑏 ) ∈ ℂ )
48 3 4 45 47 33 isumclim ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( ℤ𝐴 ) ( 𝐺𝑏 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) )
49 1mhlfehlf ( 1 − ( 1 / 2 ) ) = ( 1 / 2 )
50 49 oveq2i ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 / 2 ) )
51 2cn 2 ∈ ℂ
52 mulcl ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) ∈ ℂ )
53 32 51 52 sylancl ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) ∈ ℂ )
54 53 div1d ( 𝐴 ∈ ℕ → ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) / 1 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) )
55 1rp 1 ∈ ℝ+
56 rpcnne0 ( 1 ∈ ℝ+ → ( 1 ∈ ℂ ∧ 1 ≠ 0 ) )
57 55 56 ax-mp ( 1 ∈ ℂ ∧ 1 ≠ 0 )
58 2cnne0 ( 2 ∈ ℂ ∧ 2 ≠ 0 )
59 divdiv2 ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ∧ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 / 2 ) ) = ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) / 1 ) )
60 57 58 59 mp3an23 ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 / 2 ) ) = ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) / 1 ) )
61 32 60 syl ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 / 2 ) ) = ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) / 1 ) )
62 mulcom ( ( 2 ∈ ℂ ∧ ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ) → ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) )
63 51 32 62 sylancr ( 𝐴 ∈ ℕ → ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) )
64 54 61 63 3eqtr4d ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 / 2 ) ) = ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) )
65 50 64 eqtrid ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) = ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) )
66 48 65 eqtrd ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( ℤ𝐴 ) ( 𝐺𝑏 ) = ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) )
67 46 66 breqtrd ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( ℤ𝐴 ) ( 𝐹𝑏 ) ≤ ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) )
68 42 44 67 3jca ( 𝐴 ∈ ℕ → ( seq 𝐴 ( + , 𝐹 ) ∈ dom ⇝ ∧ Σ 𝑏 ∈ ( ℤ𝐴 ) ( 𝐹𝑏 ) ∈ ℝ+ ∧ Σ 𝑏 ∈ ( ℤ𝐴 ) ( 𝐹𝑏 ) ≤ ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) )