| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aaliou3lem.a |
⊢ 𝐺 = ( 𝑐 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) ) |
| 2 |
|
aaliou3lem.b |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) |
| 3 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝐴 ) = ( ℤ≥ ‘ 𝐴 ) |
| 4 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
| 5 |
|
uzid |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 7 |
1
|
aaliou3lem1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑏 ) ∈ ℝ ) |
| 8 |
1 2
|
aaliou3lem2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ( 0 (,] ( 𝐺 ‘ 𝑏 ) ) ) |
| 9 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 10 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( 𝐺 ‘ 𝑏 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑏 ) ∈ ( 0 (,] ( 𝐺 ‘ 𝑏 ) ) ↔ ( ( 𝐹 ‘ 𝑏 ) ∈ ℝ ∧ 0 < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 11 |
9 7 10
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑏 ) ∈ ( 0 (,] ( 𝐺 ‘ 𝑏 ) ) ↔ ( ( 𝐹 ‘ 𝑏 ) ∈ ℝ ∧ 0 < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 12 |
8 11
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑏 ) ∈ ℝ ∧ 0 < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ) |
| 13 |
12
|
simp1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
| 14 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 15 |
14
|
a1i |
⊢ ( 𝐴 ∈ ℕ → ( 1 / 2 ) ∈ ℂ ) |
| 16 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 17 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
| 18 |
16 17
|
elrpii |
⊢ ( 1 / 2 ) ∈ ℝ+ |
| 19 |
|
rprege0 |
⊢ ( ( 1 / 2 ) ∈ ℝ+ → ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) ) |
| 20 |
|
absid |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 21 |
18 19 20
|
mp2b |
⊢ ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
| 22 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 23 |
21 22
|
eqbrtri |
⊢ ( abs ‘ ( 1 / 2 ) ) < 1 |
| 24 |
23
|
a1i |
⊢ ( 𝐴 ∈ ℕ → ( abs ‘ ( 1 / 2 ) ) < 1 ) |
| 25 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 26 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
| 27 |
26
|
faccld |
⊢ ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) ∈ ℕ ) |
| 28 |
27
|
nnzd |
⊢ ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) ∈ ℤ ) |
| 29 |
28
|
znegcld |
⊢ ( 𝐴 ∈ ℕ → - ( ! ‘ 𝐴 ) ∈ ℤ ) |
| 30 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝐴 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 31 |
25 29 30
|
sylancr |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 32 |
31
|
rpcnd |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ) |
| 33 |
4 15 24 32 1
|
geolim3 |
⊢ ( 𝐴 ∈ ℕ → seq 𝐴 ( + , 𝐺 ) ⇝ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) ) |
| 34 |
|
seqex |
⊢ seq 𝐴 ( + , 𝐺 ) ∈ V |
| 35 |
|
ovex |
⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) ∈ V |
| 36 |
34 35
|
breldm |
⊢ ( seq 𝐴 ( + , 𝐺 ) ⇝ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) → seq 𝐴 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 37 |
33 36
|
syl |
⊢ ( 𝐴 ∈ ℕ → seq 𝐴 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 38 |
12
|
simp2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 0 < ( 𝐹 ‘ 𝑏 ) ) |
| 39 |
13 38
|
elrpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ+ ) |
| 40 |
39
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 0 ≤ ( 𝐹 ‘ 𝑏 ) ) |
| 41 |
12
|
simp3d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) |
| 42 |
3 6 7 13 37 40 41
|
cvgcmp |
⊢ ( 𝐴 ∈ ℕ → seq 𝐴 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 43 |
|
eqidd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 44 |
3 3 6 43 39 42
|
isumrpcl |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ∈ ℝ+ ) |
| 45 |
|
eqidd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) ) |
| 46 |
3 4 43 13 45 7 41 42 37
|
isumle |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ≤ Σ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ( 𝐺 ‘ 𝑏 ) ) |
| 47 |
7
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑏 ) ∈ ℂ ) |
| 48 |
3 4 45 47 33
|
isumclim |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ( 𝐺 ‘ 𝑏 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) ) |
| 49 |
|
1mhlfehlf |
⊢ ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) |
| 50 |
49
|
oveq2i |
⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 / 2 ) ) |
| 51 |
|
2cn |
⊢ 2 ∈ ℂ |
| 52 |
|
mulcl |
⊢ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) ∈ ℂ ) |
| 53 |
32 51 52
|
sylancl |
⊢ ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) ∈ ℂ ) |
| 54 |
53
|
div1d |
⊢ ( 𝐴 ∈ ℕ → ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) / 1 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) ) |
| 55 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 56 |
|
rpcnne0 |
⊢ ( 1 ∈ ℝ+ → ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) |
| 57 |
55 56
|
ax-mp |
⊢ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) |
| 58 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 59 |
|
divdiv2 |
⊢ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ∧ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 / 2 ) ) = ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) / 1 ) ) |
| 60 |
57 58 59
|
mp3an23 |
⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 / 2 ) ) = ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) / 1 ) ) |
| 61 |
32 60
|
syl |
⊢ ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 / 2 ) ) = ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) / 1 ) ) |
| 62 |
|
mulcom |
⊢ ( ( 2 ∈ ℂ ∧ ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ) → ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) ) |
| 63 |
51 32 62
|
sylancr |
⊢ ( 𝐴 ∈ ℕ → ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 2 ) ) |
| 64 |
54 61 63
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 / 2 ) ) = ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) |
| 65 |
50 64
|
eqtrid |
⊢ ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) / ( 1 − ( 1 / 2 ) ) ) = ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) |
| 66 |
48 65
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ( 𝐺 ‘ 𝑏 ) = ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) |
| 67 |
46 66
|
breqtrd |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ≤ ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) |
| 68 |
42 44 67
|
3jca |
⊢ ( 𝐴 ∈ ℕ → ( seq 𝐴 ( + , 𝐹 ) ∈ dom ⇝ ∧ Σ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ∈ ℝ+ ∧ Σ 𝑏 ∈ ( ℤ≥ ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ≤ ( 2 · ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) ) ) |