| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aaliou3lem.a |
|
| 2 |
|
aaliou3lem.b |
|
| 3 |
|
eqid |
|
| 4 |
|
nnz |
|
| 5 |
|
uzid |
|
| 6 |
4 5
|
syl |
|
| 7 |
1
|
aaliou3lem1 |
|
| 8 |
1 2
|
aaliou3lem2 |
|
| 9 |
|
0xr |
|
| 10 |
|
elioc2 |
|
| 11 |
9 7 10
|
sylancr |
|
| 12 |
8 11
|
mpbid |
|
| 13 |
12
|
simp1d |
|
| 14 |
|
halfcn |
|
| 15 |
14
|
a1i |
|
| 16 |
|
halfre |
|
| 17 |
|
halfgt0 |
|
| 18 |
16 17
|
elrpii |
|
| 19 |
|
rprege0 |
|
| 20 |
|
absid |
|
| 21 |
18 19 20
|
mp2b |
|
| 22 |
|
halflt1 |
|
| 23 |
21 22
|
eqbrtri |
|
| 24 |
23
|
a1i |
|
| 25 |
|
2rp |
|
| 26 |
|
nnnn0 |
|
| 27 |
26
|
faccld |
|
| 28 |
27
|
nnzd |
|
| 29 |
28
|
znegcld |
|
| 30 |
|
rpexpcl |
|
| 31 |
25 29 30
|
sylancr |
|
| 32 |
31
|
rpcnd |
|
| 33 |
4 15 24 32 1
|
geolim3 |
|
| 34 |
|
seqex |
|
| 35 |
|
ovex |
|
| 36 |
34 35
|
breldm |
|
| 37 |
33 36
|
syl |
|
| 38 |
12
|
simp2d |
|
| 39 |
13 38
|
elrpd |
|
| 40 |
39
|
rpge0d |
|
| 41 |
12
|
simp3d |
|
| 42 |
3 6 7 13 37 40 41
|
cvgcmp |
|
| 43 |
|
eqidd |
|
| 44 |
3 3 6 43 39 42
|
isumrpcl |
|
| 45 |
|
eqidd |
|
| 46 |
3 4 43 13 45 7 41 42 37
|
isumle |
|
| 47 |
7
|
recnd |
|
| 48 |
3 4 45 47 33
|
isumclim |
|
| 49 |
|
1mhlfehlf |
|
| 50 |
49
|
oveq2i |
|
| 51 |
|
2cn |
|
| 52 |
|
mulcl |
|
| 53 |
32 51 52
|
sylancl |
|
| 54 |
53
|
div1d |
|
| 55 |
|
1rp |
|
| 56 |
|
rpcnne0 |
|
| 57 |
55 56
|
ax-mp |
|
| 58 |
|
2cnne0 |
|
| 59 |
|
divdiv2 |
|
| 60 |
57 58 59
|
mp3an23 |
|
| 61 |
32 60
|
syl |
|
| 62 |
|
mulcom |
|
| 63 |
51 32 62
|
sylancr |
|
| 64 |
54 61 63
|
3eqtr4d |
|
| 65 |
50 64
|
eqtrid |
|
| 66 |
48 65
|
eqtrd |
|
| 67 |
46 66
|
breqtrd |
|
| 68 |
42 44 67
|
3jca |
|