| Step |
Hyp |
Ref |
Expression |
| 1 |
|
geolim3.a |
|
| 2 |
|
geolim3.b1 |
|
| 3 |
|
geolim3.b2 |
|
| 4 |
|
geolim3.c |
|
| 5 |
|
geolim3.f |
|
| 6 |
|
seqeq3 |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
|
nn0uz |
|
| 9 |
|
0zd |
|
| 10 |
|
oveq2 |
|
| 11 |
|
eqid |
|
| 12 |
|
ovex |
|
| 13 |
10 11 12
|
fvmpt |
|
| 14 |
13
|
adantl |
|
| 15 |
2 3 14
|
geolim |
|
| 16 |
|
expcl |
|
| 17 |
2 16
|
sylan |
|
| 18 |
14 17
|
eqeltrd |
|
| 19 |
1
|
zcnd |
|
| 20 |
|
nn0cn |
|
| 21 |
|
fvex |
|
| 22 |
21
|
mptex |
|
| 23 |
22
|
shftval4 |
|
| 24 |
19 20 23
|
syl2an |
|
| 25 |
|
uzid |
|
| 26 |
1 25
|
syl |
|
| 27 |
|
uzaddcl |
|
| 28 |
26 27
|
sylan |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
30
|
oveq2d |
|
| 32 |
|
eqid |
|
| 33 |
|
ovex |
|
| 34 |
31 32 33
|
fvmpt |
|
| 35 |
28 34
|
syl |
|
| 36 |
|
pncan2 |
|
| 37 |
19 20 36
|
syl2an |
|
| 38 |
37
|
oveq2d |
|
| 39 |
38 14
|
eqtr4d |
|
| 40 |
39
|
oveq2d |
|
| 41 |
24 35 40
|
3eqtrd |
|
| 42 |
8 9 4 15 18 41
|
isermulc2 |
|
| 43 |
19
|
negidd |
|
| 44 |
43
|
seqeq1d |
|
| 45 |
|
ax-1cn |
|
| 46 |
|
subcl |
|
| 47 |
45 2 46
|
sylancr |
|
| 48 |
|
abs1 |
|
| 49 |
48
|
a1i |
|
| 50 |
2
|
abscld |
|
| 51 |
50 3
|
gtned |
|
| 52 |
49 51
|
eqnetrd |
|
| 53 |
|
fveq2 |
|
| 54 |
53
|
necon3i |
|
| 55 |
52 54
|
syl |
|
| 56 |
|
subeq0 |
|
| 57 |
45 2 56
|
sylancr |
|
| 58 |
57
|
necon3bid |
|
| 59 |
55 58
|
mpbird |
|
| 60 |
4 47 59
|
divrecd |
|
| 61 |
42 44 60
|
3brtr4d |
|
| 62 |
1
|
znegcld |
|
| 63 |
22
|
isershft |
|
| 64 |
1 62 63
|
syl2anc |
|
| 65 |
61 64
|
mpbird |
|
| 66 |
7 65
|
eqbrtrid |
|