| Step |
Hyp |
Ref |
Expression |
| 1 |
|
geolim3.a |
|- ( ph -> A e. ZZ ) |
| 2 |
|
geolim3.b1 |
|- ( ph -> B e. CC ) |
| 3 |
|
geolim3.b2 |
|- ( ph -> ( abs ` B ) < 1 ) |
| 4 |
|
geolim3.c |
|- ( ph -> C e. CC ) |
| 5 |
|
geolim3.f |
|- F = ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) |
| 6 |
|
seqeq3 |
|- ( F = ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) -> seq A ( + , F ) = seq A ( + , ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ) ) |
| 7 |
5 6
|
ax-mp |
|- seq A ( + , F ) = seq A ( + , ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ) |
| 8 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 9 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 10 |
|
oveq2 |
|- ( k = a -> ( B ^ k ) = ( B ^ a ) ) |
| 11 |
|
eqid |
|- ( k e. NN0 |-> ( B ^ k ) ) = ( k e. NN0 |-> ( B ^ k ) ) |
| 12 |
|
ovex |
|- ( B ^ a ) e. _V |
| 13 |
10 11 12
|
fvmpt |
|- ( a e. NN0 -> ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) = ( B ^ a ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ a e. NN0 ) -> ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) = ( B ^ a ) ) |
| 15 |
2 3 14
|
geolim |
|- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( B ^ k ) ) ) ~~> ( 1 / ( 1 - B ) ) ) |
| 16 |
|
expcl |
|- ( ( B e. CC /\ a e. NN0 ) -> ( B ^ a ) e. CC ) |
| 17 |
2 16
|
sylan |
|- ( ( ph /\ a e. NN0 ) -> ( B ^ a ) e. CC ) |
| 18 |
14 17
|
eqeltrd |
|- ( ( ph /\ a e. NN0 ) -> ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) e. CC ) |
| 19 |
1
|
zcnd |
|- ( ph -> A e. CC ) |
| 20 |
|
nn0cn |
|- ( a e. NN0 -> a e. CC ) |
| 21 |
|
fvex |
|- ( ZZ>= ` A ) e. _V |
| 22 |
21
|
mptex |
|- ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) e. _V |
| 23 |
22
|
shftval4 |
|- ( ( A e. CC /\ a e. CC ) -> ( ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ` a ) = ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ` ( A + a ) ) ) |
| 24 |
19 20 23
|
syl2an |
|- ( ( ph /\ a e. NN0 ) -> ( ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ` a ) = ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ` ( A + a ) ) ) |
| 25 |
|
uzid |
|- ( A e. ZZ -> A e. ( ZZ>= ` A ) ) |
| 26 |
1 25
|
syl |
|- ( ph -> A e. ( ZZ>= ` A ) ) |
| 27 |
|
uzaddcl |
|- ( ( A e. ( ZZ>= ` A ) /\ a e. NN0 ) -> ( A + a ) e. ( ZZ>= ` A ) ) |
| 28 |
26 27
|
sylan |
|- ( ( ph /\ a e. NN0 ) -> ( A + a ) e. ( ZZ>= ` A ) ) |
| 29 |
|
oveq1 |
|- ( k = ( A + a ) -> ( k - A ) = ( ( A + a ) - A ) ) |
| 30 |
29
|
oveq2d |
|- ( k = ( A + a ) -> ( B ^ ( k - A ) ) = ( B ^ ( ( A + a ) - A ) ) ) |
| 31 |
30
|
oveq2d |
|- ( k = ( A + a ) -> ( C x. ( B ^ ( k - A ) ) ) = ( C x. ( B ^ ( ( A + a ) - A ) ) ) ) |
| 32 |
|
eqid |
|- ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) = ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) |
| 33 |
|
ovex |
|- ( C x. ( B ^ ( ( A + a ) - A ) ) ) e. _V |
| 34 |
31 32 33
|
fvmpt |
|- ( ( A + a ) e. ( ZZ>= ` A ) -> ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ` ( A + a ) ) = ( C x. ( B ^ ( ( A + a ) - A ) ) ) ) |
| 35 |
28 34
|
syl |
|- ( ( ph /\ a e. NN0 ) -> ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ` ( A + a ) ) = ( C x. ( B ^ ( ( A + a ) - A ) ) ) ) |
| 36 |
|
pncan2 |
|- ( ( A e. CC /\ a e. CC ) -> ( ( A + a ) - A ) = a ) |
| 37 |
19 20 36
|
syl2an |
|- ( ( ph /\ a e. NN0 ) -> ( ( A + a ) - A ) = a ) |
| 38 |
37
|
oveq2d |
|- ( ( ph /\ a e. NN0 ) -> ( B ^ ( ( A + a ) - A ) ) = ( B ^ a ) ) |
| 39 |
38 14
|
eqtr4d |
|- ( ( ph /\ a e. NN0 ) -> ( B ^ ( ( A + a ) - A ) ) = ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) ) |
| 40 |
39
|
oveq2d |
|- ( ( ph /\ a e. NN0 ) -> ( C x. ( B ^ ( ( A + a ) - A ) ) ) = ( C x. ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) ) ) |
| 41 |
24 35 40
|
3eqtrd |
|- ( ( ph /\ a e. NN0 ) -> ( ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ` a ) = ( C x. ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) ) ) |
| 42 |
8 9 4 15 18 41
|
isermulc2 |
|- ( ph -> seq 0 ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) ~~> ( C x. ( 1 / ( 1 - B ) ) ) ) |
| 43 |
19
|
negidd |
|- ( ph -> ( A + -u A ) = 0 ) |
| 44 |
43
|
seqeq1d |
|- ( ph -> seq ( A + -u A ) ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) = seq 0 ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) ) |
| 45 |
|
ax-1cn |
|- 1 e. CC |
| 46 |
|
subcl |
|- ( ( 1 e. CC /\ B e. CC ) -> ( 1 - B ) e. CC ) |
| 47 |
45 2 46
|
sylancr |
|- ( ph -> ( 1 - B ) e. CC ) |
| 48 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 49 |
48
|
a1i |
|- ( ph -> ( abs ` 1 ) = 1 ) |
| 50 |
2
|
abscld |
|- ( ph -> ( abs ` B ) e. RR ) |
| 51 |
50 3
|
gtned |
|- ( ph -> 1 =/= ( abs ` B ) ) |
| 52 |
49 51
|
eqnetrd |
|- ( ph -> ( abs ` 1 ) =/= ( abs ` B ) ) |
| 53 |
|
fveq2 |
|- ( 1 = B -> ( abs ` 1 ) = ( abs ` B ) ) |
| 54 |
53
|
necon3i |
|- ( ( abs ` 1 ) =/= ( abs ` B ) -> 1 =/= B ) |
| 55 |
52 54
|
syl |
|- ( ph -> 1 =/= B ) |
| 56 |
|
subeq0 |
|- ( ( 1 e. CC /\ B e. CC ) -> ( ( 1 - B ) = 0 <-> 1 = B ) ) |
| 57 |
45 2 56
|
sylancr |
|- ( ph -> ( ( 1 - B ) = 0 <-> 1 = B ) ) |
| 58 |
57
|
necon3bid |
|- ( ph -> ( ( 1 - B ) =/= 0 <-> 1 =/= B ) ) |
| 59 |
55 58
|
mpbird |
|- ( ph -> ( 1 - B ) =/= 0 ) |
| 60 |
4 47 59
|
divrecd |
|- ( ph -> ( C / ( 1 - B ) ) = ( C x. ( 1 / ( 1 - B ) ) ) ) |
| 61 |
42 44 60
|
3brtr4d |
|- ( ph -> seq ( A + -u A ) ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) ~~> ( C / ( 1 - B ) ) ) |
| 62 |
1
|
znegcld |
|- ( ph -> -u A e. ZZ ) |
| 63 |
22
|
isershft |
|- ( ( A e. ZZ /\ -u A e. ZZ ) -> ( seq A ( + , ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ) ~~> ( C / ( 1 - B ) ) <-> seq ( A + -u A ) ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) ~~> ( C / ( 1 - B ) ) ) ) |
| 64 |
1 62 63
|
syl2anc |
|- ( ph -> ( seq A ( + , ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ) ~~> ( C / ( 1 - B ) ) <-> seq ( A + -u A ) ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) ~~> ( C / ( 1 - B ) ) ) ) |
| 65 |
61 64
|
mpbird |
|- ( ph -> seq A ( + , ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ) ~~> ( C / ( 1 - B ) ) ) |
| 66 |
7 65
|
eqbrtrid |
|- ( ph -> seq A ( + , F ) ~~> ( C / ( 1 - B ) ) ) |