| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin |  |-  ( A e. ( AA i^i RR ) <-> ( A e. AA /\ A e. RR ) ) | 
						
							| 2 |  | elaa |  |-  ( A e. AA <-> ( A e. CC /\ E. a e. ( ( Poly ` ZZ ) \ { 0p } ) ( a ` A ) = 0 ) ) | 
						
							| 3 |  | eldifn |  |-  ( a e. ( ( Poly ` ZZ ) \ { 0p } ) -> -. a e. { 0p } ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> -. a e. { 0p } ) | 
						
							| 5 |  | simpr |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> a = ( CC X. { ( a ` 0 ) } ) ) | 
						
							| 6 |  | fveq1 |  |-  ( a = ( CC X. { ( a ` 0 ) } ) -> ( a ` A ) = ( ( CC X. { ( a ` 0 ) } ) ` A ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> ( a ` A ) = ( ( CC X. { ( a ` 0 ) } ) ` A ) ) | 
						
							| 8 |  | simpl2 |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> ( a ` A ) = 0 ) | 
						
							| 9 |  | simpl3 |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> A e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> A e. CC ) | 
						
							| 11 |  | fvex |  |-  ( a ` 0 ) e. _V | 
						
							| 12 | 11 | fvconst2 |  |-  ( A e. CC -> ( ( CC X. { ( a ` 0 ) } ) ` A ) = ( a ` 0 ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> ( ( CC X. { ( a ` 0 ) } ) ` A ) = ( a ` 0 ) ) | 
						
							| 14 | 7 8 13 | 3eqtr3rd |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> ( a ` 0 ) = 0 ) | 
						
							| 15 | 14 | sneqd |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> { ( a ` 0 ) } = { 0 } ) | 
						
							| 16 | 15 | xpeq2d |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> ( CC X. { ( a ` 0 ) } ) = ( CC X. { 0 } ) ) | 
						
							| 17 | 5 16 | eqtrd |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> a = ( CC X. { 0 } ) ) | 
						
							| 18 |  | df-0p |  |-  0p = ( CC X. { 0 } ) | 
						
							| 19 | 17 18 | eqtr4di |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> a = 0p ) | 
						
							| 20 |  | velsn |  |-  ( a e. { 0p } <-> a = 0p ) | 
						
							| 21 | 19 20 | sylibr |  |-  ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> a e. { 0p } ) | 
						
							| 22 | 4 21 | mtand |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> -. a = ( CC X. { ( a ` 0 ) } ) ) | 
						
							| 23 |  | eldifi |  |-  ( a e. ( ( Poly ` ZZ ) \ { 0p } ) -> a e. ( Poly ` ZZ ) ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> a e. ( Poly ` ZZ ) ) | 
						
							| 25 |  | 0dgrb |  |-  ( a e. ( Poly ` ZZ ) -> ( ( deg ` a ) = 0 <-> a = ( CC X. { ( a ` 0 ) } ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> ( ( deg ` a ) = 0 <-> a = ( CC X. { ( a ` 0 ) } ) ) ) | 
						
							| 27 | 22 26 | mtbird |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> -. ( deg ` a ) = 0 ) | 
						
							| 28 |  | dgrcl |  |-  ( a e. ( Poly ` ZZ ) -> ( deg ` a ) e. NN0 ) | 
						
							| 29 | 24 28 | syl |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> ( deg ` a ) e. NN0 ) | 
						
							| 30 |  | elnn0 |  |-  ( ( deg ` a ) e. NN0 <-> ( ( deg ` a ) e. NN \/ ( deg ` a ) = 0 ) ) | 
						
							| 31 | 29 30 | sylib |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> ( ( deg ` a ) e. NN \/ ( deg ` a ) = 0 ) ) | 
						
							| 32 |  | orel2 |  |-  ( -. ( deg ` a ) = 0 -> ( ( ( deg ` a ) e. NN \/ ( deg ` a ) = 0 ) -> ( deg ` a ) e. NN ) ) | 
						
							| 33 | 27 31 32 | sylc |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> ( deg ` a ) e. NN ) | 
						
							| 34 |  | eqid |  |-  ( deg ` a ) = ( deg ` a ) | 
						
							| 35 |  | simp3 |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> A e. RR ) | 
						
							| 36 |  | simp2 |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> ( a ` A ) = 0 ) | 
						
							| 37 | 34 24 33 35 36 | aaliou |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) | 
						
							| 38 |  | oveq2 |  |-  ( k = ( deg ` a ) -> ( q ^ k ) = ( q ^ ( deg ` a ) ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( k = ( deg ` a ) -> ( x / ( q ^ k ) ) = ( x / ( q ^ ( deg ` a ) ) ) ) | 
						
							| 40 | 39 | breq1d |  |-  ( k = ( deg ` a ) -> ( ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) <-> ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) | 
						
							| 41 | 40 | orbi2d |  |-  ( k = ( deg ` a ) -> ( ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) <-> ( A = ( p / q ) \/ ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) | 
						
							| 42 | 41 | 2ralbidv |  |-  ( k = ( deg ` a ) -> ( A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) <-> A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) | 
						
							| 43 | 42 | rexbidv |  |-  ( k = ( deg ` a ) -> ( E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) <-> E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) | 
						
							| 44 | 43 | rspcev |  |-  ( ( ( deg ` a ) e. NN /\ E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) | 
						
							| 45 | 33 37 44 | syl2anc |  |-  ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) | 
						
							| 46 | 45 | 3exp |  |-  ( a e. ( ( Poly ` ZZ ) \ { 0p } ) -> ( ( a ` A ) = 0 -> ( A e. RR -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) ) | 
						
							| 47 | 46 | rexlimiv |  |-  ( E. a e. ( ( Poly ` ZZ ) \ { 0p } ) ( a ` A ) = 0 -> ( A e. RR -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) | 
						
							| 48 | 2 47 | simplbiim |  |-  ( A e. AA -> ( A e. RR -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) | 
						
							| 49 | 48 | imp |  |-  ( ( A e. AA /\ A e. RR ) -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) | 
						
							| 50 | 1 49 | sylbi |  |-  ( A e. ( AA i^i RR ) -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |