| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin | ⊢ ( 𝐴  ∈  ( 𝔸  ∩  ℝ )  ↔  ( 𝐴  ∈  𝔸  ∧  𝐴  ∈  ℝ ) ) | 
						
							| 2 |  | elaa | ⊢ ( 𝐴  ∈  𝔸  ↔  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑎 ‘ 𝐴 )  =  0 ) ) | 
						
							| 3 |  | eldifn | ⊢ ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  →  ¬  𝑎  ∈  { 0𝑝 } ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  ¬  𝑎  ∈  { 0𝑝 } ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) ) | 
						
							| 6 |  | fveq1 | ⊢ ( 𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } )  →  ( 𝑎 ‘ 𝐴 )  =  ( ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) ‘ 𝐴 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  ( 𝑎 ‘ 𝐴 )  =  ( ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) ‘ 𝐴 ) ) | 
						
							| 8 |  | simpl2 | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  ( 𝑎 ‘ 𝐴 )  =  0 ) | 
						
							| 9 |  | simpl3 | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  𝐴  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  𝐴  ∈  ℂ ) | 
						
							| 11 |  | fvex | ⊢ ( 𝑎 ‘ 0 )  ∈  V | 
						
							| 12 | 11 | fvconst2 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) ‘ 𝐴 )  =  ( 𝑎 ‘ 0 ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  ( ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) ‘ 𝐴 )  =  ( 𝑎 ‘ 0 ) ) | 
						
							| 14 | 7 8 13 | 3eqtr3rd | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  ( 𝑎 ‘ 0 )  =  0 ) | 
						
							| 15 | 14 | sneqd | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  { ( 𝑎 ‘ 0 ) }  =  { 0 } ) | 
						
							| 16 | 15 | xpeq2d | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } )  =  ( ℂ  ×  { 0 } ) ) | 
						
							| 17 | 5 16 | eqtrd | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  𝑎  =  ( ℂ  ×  { 0 } ) ) | 
						
							| 18 |  | df-0p | ⊢ 0𝑝  =  ( ℂ  ×  { 0 } ) | 
						
							| 19 | 17 18 | eqtr4di | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  𝑎  =  0𝑝 ) | 
						
							| 20 |  | velsn | ⊢ ( 𝑎  ∈  { 0𝑝 }  ↔  𝑎  =  0𝑝 ) | 
						
							| 21 | 19 20 | sylibr | ⊢ ( ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  ∧  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) )  →  𝑎  ∈  { 0𝑝 } ) | 
						
							| 22 | 4 21 | mtand | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  ¬  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) ) | 
						
							| 23 |  | eldifi | ⊢ ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  →  𝑎  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  𝑎  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 25 |  | 0dgrb | ⊢ ( 𝑎  ∈  ( Poly ‘ ℤ )  →  ( ( deg ‘ 𝑎 )  =  0  ↔  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  ( ( deg ‘ 𝑎 )  =  0  ↔  𝑎  =  ( ℂ  ×  { ( 𝑎 ‘ 0 ) } ) ) ) | 
						
							| 27 | 22 26 | mtbird | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  ¬  ( deg ‘ 𝑎 )  =  0 ) | 
						
							| 28 |  | dgrcl | ⊢ ( 𝑎  ∈  ( Poly ‘ ℤ )  →  ( deg ‘ 𝑎 )  ∈  ℕ0 ) | 
						
							| 29 | 24 28 | syl | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  ( deg ‘ 𝑎 )  ∈  ℕ0 ) | 
						
							| 30 |  | elnn0 | ⊢ ( ( deg ‘ 𝑎 )  ∈  ℕ0  ↔  ( ( deg ‘ 𝑎 )  ∈  ℕ  ∨  ( deg ‘ 𝑎 )  =  0 ) ) | 
						
							| 31 | 29 30 | sylib | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  ( ( deg ‘ 𝑎 )  ∈  ℕ  ∨  ( deg ‘ 𝑎 )  =  0 ) ) | 
						
							| 32 |  | orel2 | ⊢ ( ¬  ( deg ‘ 𝑎 )  =  0  →  ( ( ( deg ‘ 𝑎 )  ∈  ℕ  ∨  ( deg ‘ 𝑎 )  =  0 )  →  ( deg ‘ 𝑎 )  ∈  ℕ ) ) | 
						
							| 33 | 27 31 32 | sylc | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  ( deg ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 34 |  | eqid | ⊢ ( deg ‘ 𝑎 )  =  ( deg ‘ 𝑎 ) | 
						
							| 35 |  | simp3 | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 36 |  | simp2 | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  ( 𝑎 ‘ 𝐴 )  =  0 ) | 
						
							| 37 | 34 24 33 35 36 | aaliou | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑘  =  ( deg ‘ 𝑎 )  →  ( 𝑞 ↑ 𝑘 )  =  ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝑘  =  ( deg ‘ 𝑎 )  →  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  =  ( 𝑥  /  ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) ) ) | 
						
							| 40 | 39 | breq1d | ⊢ ( 𝑘  =  ( deg ‘ 𝑎 )  →  ( ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) )  ↔  ( 𝑥  /  ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 41 | 40 | orbi2d | ⊢ ( 𝑘  =  ( deg ‘ 𝑎 )  →  ( ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  ↔  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 42 | 41 | 2ralbidv | ⊢ ( 𝑘  =  ( deg ‘ 𝑎 )  →  ( ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  ↔  ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 43 | 42 | rexbidv | ⊢ ( 𝑘  =  ( deg ‘ 𝑎 )  →  ( ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  ↔  ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 44 | 43 | rspcev | ⊢ ( ( ( deg ‘ 𝑎 )  ∈  ℕ  ∧  ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ ( deg ‘ 𝑎 ) ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) )  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 45 | 33 37 44 | syl2anc | ⊢ ( ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑎 ‘ 𝐴 )  =  0  ∧  𝐴  ∈  ℝ )  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 46 | 45 | 3exp | ⊢ ( 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  →  ( ( 𝑎 ‘ 𝐴 )  =  0  →  ( 𝐴  ∈  ℝ  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) ) | 
						
							| 47 | 46 | rexlimiv | ⊢ ( ∃ 𝑎  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑎 ‘ 𝐴 )  =  0  →  ( 𝐴  ∈  ℝ  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 48 | 2 47 | simplbiim | ⊢ ( 𝐴  ∈  𝔸  →  ( 𝐴  ∈  ℝ  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 49 | 48 | imp | ⊢ ( ( 𝐴  ∈  𝔸  ∧  𝐴  ∈  ℝ )  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 50 | 1 49 | sylbi | ⊢ ( 𝐴  ∈  ( 𝔸  ∩  ℝ )  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) |