| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝔸 ∩ ℝ ) ↔ ( 𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ ) ) |
| 2 |
|
aaliou2 |
⊢ ( 𝐴 ∈ ( 𝔸 ∩ ℝ ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
| 3 |
1 2
|
sylbir |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
| 4 |
|
1nn |
⊢ 1 ∈ ℕ |
| 5 |
|
aacn |
⊢ ( 𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 7 |
6
|
imcld |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 9 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 10 |
5 9
|
syl |
⊢ ( 𝐴 ∈ 𝔸 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 11 |
10
|
necon3bbid |
⊢ ( 𝐴 ∈ 𝔸 → ( ¬ 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) ≠ 0 ) ) |
| 12 |
11
|
biimpa |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 13 |
8 12
|
absrpcld |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 14 |
13
|
rphalfcld |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ+ ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ+ ) |
| 16 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 17 |
|
nnexpcl |
⊢ ( ( 𝑞 ∈ ℕ ∧ 1 ∈ ℕ0 ) → ( 𝑞 ↑ 1 ) ∈ ℕ ) |
| 18 |
16 17
|
mpan2 |
⊢ ( 𝑞 ∈ ℕ → ( 𝑞 ↑ 1 ) ∈ ℕ ) |
| 19 |
18
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑞 ↑ 1 ) ∈ ℕ ) |
| 20 |
19
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑞 ↑ 1 ) ∈ ℝ+ ) |
| 21 |
15 20
|
rpdivcld |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ∈ ℝ+ ) |
| 22 |
21
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ∈ ℝ ) |
| 23 |
15
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ ) |
| 24 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → 𝐴 ∈ ℂ ) |
| 25 |
|
znq |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) → ( 𝑝 / 𝑞 ) ∈ ℚ ) |
| 26 |
25
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 / 𝑞 ) ∈ ℚ ) |
| 27 |
|
qre |
⊢ ( ( 𝑝 / 𝑞 ) ∈ ℚ → ( 𝑝 / 𝑞 ) ∈ ℝ ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 / 𝑞 ) ∈ ℝ ) |
| 29 |
28
|
recnd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 / 𝑞 ) ∈ ℂ ) |
| 30 |
24 29
|
subcld |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝐴 − ( 𝑝 / 𝑞 ) ) ∈ ℂ ) |
| 31 |
30
|
abscld |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ∈ ℝ ) |
| 32 |
19
|
nnge1d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → 1 ≤ ( 𝑞 ↑ 1 ) ) |
| 33 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 34 |
|
rpregt0 |
⊢ ( 1 ∈ ℝ+ → ( 1 ∈ ℝ ∧ 0 < 1 ) ) |
| 35 |
33 34
|
mp1i |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 1 ∈ ℝ ∧ 0 < 1 ) ) |
| 36 |
20
|
rpregt0d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( 𝑞 ↑ 1 ) ∈ ℝ ∧ 0 < ( 𝑞 ↑ 1 ) ) ) |
| 37 |
15
|
rpregt0d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ ∧ 0 < ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ) ) |
| 38 |
|
lediv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( ( 𝑞 ↑ 1 ) ∈ ℝ ∧ 0 < ( 𝑞 ↑ 1 ) ) ∧ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ ∧ 0 < ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ) ) → ( 1 ≤ ( 𝑞 ↑ 1 ) ↔ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ≤ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / 1 ) ) ) |
| 39 |
35 36 37 38
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 1 ≤ ( 𝑞 ↑ 1 ) ↔ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ≤ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / 1 ) ) ) |
| 40 |
32 39
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ≤ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / 1 ) ) |
| 41 |
15
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℂ ) |
| 42 |
41
|
div1d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / 1 ) = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ) |
| 43 |
40 42
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ≤ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ) |
| 44 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 45 |
44
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 46 |
|
rphalflt |
⊢ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 47 |
44 46
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 48 |
24 29
|
imsubd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ℑ ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ ( 𝑝 / 𝑞 ) ) ) ) |
| 49 |
28
|
reim0d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ℑ ‘ ( 𝑝 / 𝑞 ) ) = 0 ) |
| 50 |
49
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ ( 𝑝 / 𝑞 ) ) ) = ( ( ℑ ‘ 𝐴 ) − 0 ) ) |
| 51 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 52 |
51
|
subid1d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
| 53 |
48 50 52
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ℑ ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) = ( ℑ ‘ 𝐴 ) ) |
| 54 |
53
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( ℑ ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 55 |
|
absimle |
⊢ ( ( 𝐴 − ( 𝑝 / 𝑞 ) ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ≤ ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) |
| 56 |
30 55
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( ℑ ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ≤ ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) |
| 57 |
54 56
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ≤ ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) |
| 58 |
23 45 31 47 57
|
ltletrd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) |
| 59 |
22 23 31 43 58
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) |
| 60 |
59
|
olcd |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) ) → ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
| 61 |
60
|
ralrimivva |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
| 62 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 𝑞 ↑ 𝑘 ) = ( 𝑞 ↑ 1 ) ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑘 = 1 → ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) = ( 𝑥 / ( 𝑞 ↑ 1 ) ) ) |
| 64 |
63
|
breq1d |
⊢ ( 𝑘 = 1 → ( ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ↔ ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
| 65 |
64
|
orbi2d |
⊢ ( 𝑘 = 1 → ( ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
| 66 |
65
|
2ralbidv |
⊢ ( 𝑘 = 1 → ( ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
| 67 |
|
oveq1 |
⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( 𝑥 / ( 𝑞 ↑ 1 ) ) = ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) ) |
| 68 |
67
|
breq1d |
⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ↔ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
| 69 |
68
|
orbi2d |
⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
| 70 |
69
|
2ralbidv |
⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ↔ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) ) |
| 71 |
66 70
|
rspc2ev |
⊢ ( ( 1 ∈ ℕ ∧ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ+ ∧ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) / ( 𝑞 ↑ 1 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
| 72 |
4 14 61 71
|
mp3an2i |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ ) → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |
| 73 |
3 72
|
pm2.61dan |
⊢ ( 𝐴 ∈ 𝔸 → ∃ 𝑘 ∈ ℕ ∃ 𝑥 ∈ ℝ+ ∀ 𝑝 ∈ ℤ ∀ 𝑞 ∈ ℕ ( 𝐴 = ( 𝑝 / 𝑞 ) ∨ ( 𝑥 / ( 𝑞 ↑ 𝑘 ) ) < ( abs ‘ ( 𝐴 − ( 𝑝 / 𝑞 ) ) ) ) ) |