| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin | ⊢ ( 𝐴  ∈  ( 𝔸  ∩  ℝ )  ↔  ( 𝐴  ∈  𝔸  ∧  𝐴  ∈  ℝ ) ) | 
						
							| 2 |  | aaliou2 | ⊢ ( 𝐴  ∈  ( 𝔸  ∩  ℝ )  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 3 | 1 2 | sylbir | ⊢ ( ( 𝐴  ∈  𝔸  ∧  𝐴  ∈  ℝ )  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 4 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 5 |  | aacn | ⊢ ( 𝐴  ∈  𝔸  →  𝐴  ∈  ℂ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 7 | 6 | imcld | ⊢ ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 9 |  | reim0b | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 10 | 5 9 | syl | ⊢ ( 𝐴  ∈  𝔸  →  ( 𝐴  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 11 | 10 | necon3bbid | ⊢ ( 𝐴  ∈  𝔸  →  ( ¬  𝐴  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 12 | 11 | biimpa | ⊢ ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  →  ( ℑ ‘ 𝐴 )  ≠  0 ) | 
						
							| 13 | 8 12 | absrpcld | ⊢ ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 14 | 13 | rphalfcld | ⊢ ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  →  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  ∈  ℝ+ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  ∈  ℝ+ ) | 
						
							| 16 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 17 |  | nnexpcl | ⊢ ( ( 𝑞  ∈  ℕ  ∧  1  ∈  ℕ0 )  →  ( 𝑞 ↑ 1 )  ∈  ℕ ) | 
						
							| 18 | 16 17 | mpan2 | ⊢ ( 𝑞  ∈  ℕ  →  ( 𝑞 ↑ 1 )  ∈  ℕ ) | 
						
							| 19 | 18 | ad2antll | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑞 ↑ 1 )  ∈  ℕ ) | 
						
							| 20 | 19 | nnrpd | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑞 ↑ 1 )  ∈  ℝ+ ) | 
						
							| 21 | 15 20 | rpdivcld | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  ∈  ℝ+ ) | 
						
							| 22 | 21 | rpred | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  ∈  ℝ ) | 
						
							| 23 | 15 | rpred | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  ∈  ℝ ) | 
						
							| 24 | 6 | adantr | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  𝐴  ∈  ℂ ) | 
						
							| 25 |  | znq | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ )  →  ( 𝑝  /  𝑞 )  ∈  ℚ ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑝  /  𝑞 )  ∈  ℚ ) | 
						
							| 27 |  | qre | ⊢ ( ( 𝑝  /  𝑞 )  ∈  ℚ  →  ( 𝑝  /  𝑞 )  ∈  ℝ ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑝  /  𝑞 )  ∈  ℝ ) | 
						
							| 29 | 28 | recnd | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑝  /  𝑞 )  ∈  ℂ ) | 
						
							| 30 | 24 29 | subcld | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝐴  −  ( 𝑝  /  𝑞 ) )  ∈  ℂ ) | 
						
							| 31 | 30 | abscld | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) )  ∈  ℝ ) | 
						
							| 32 | 19 | nnge1d | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  1  ≤  ( 𝑞 ↑ 1 ) ) | 
						
							| 33 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 34 |  | rpregt0 | ⊢ ( 1  ∈  ℝ+  →  ( 1  ∈  ℝ  ∧  0  <  1 ) ) | 
						
							| 35 | 33 34 | mp1i | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 1  ∈  ℝ  ∧  0  <  1 ) ) | 
						
							| 36 | 20 | rpregt0d | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( 𝑞 ↑ 1 )  ∈  ℝ  ∧  0  <  ( 𝑞 ↑ 1 ) ) ) | 
						
							| 37 | 15 | rpregt0d | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  ∈  ℝ  ∧  0  <  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 38 |  | lediv2 | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( ( 𝑞 ↑ 1 )  ∈  ℝ  ∧  0  <  ( 𝑞 ↑ 1 ) )  ∧  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  ∈  ℝ  ∧  0  <  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 ) ) )  →  ( 1  ≤  ( 𝑞 ↑ 1 )  ↔  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  ≤  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  1 ) ) ) | 
						
							| 39 | 35 36 37 38 | syl3anc | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 1  ≤  ( 𝑞 ↑ 1 )  ↔  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  ≤  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  1 ) ) ) | 
						
							| 40 | 32 39 | mpbid | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  ≤  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  1 ) ) | 
						
							| 41 | 15 | rpcnd | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  ∈  ℂ ) | 
						
							| 42 | 41 | div1d | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  1 )  =  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 43 | 40 42 | breqtrd | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  ≤  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 44 | 13 | adantr | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 45 | 44 | rpred | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 46 |  | rphalflt | ⊢ ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ+  →  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  <  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 47 | 44 46 | syl | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  <  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 48 | 24 29 | imsubd | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ℑ ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) )  =  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ ( 𝑝  /  𝑞 ) ) ) ) | 
						
							| 49 | 28 | reim0d | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ℑ ‘ ( 𝑝  /  𝑞 ) )  =  0 ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ ( 𝑝  /  𝑞 ) ) )  =  ( ( ℑ ‘ 𝐴 )  −  0 ) ) | 
						
							| 51 | 8 | adantr | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 52 | 51 | subid1d | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( ℑ ‘ 𝐴 )  −  0 )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 53 | 48 50 52 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ℑ ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( abs ‘ ( ℑ ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 55 |  | absimle | ⊢ ( ( 𝐴  −  ( 𝑝  /  𝑞 ) )  ∈  ℂ  →  ( abs ‘ ( ℑ ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) | 
						
							| 56 | 30 55 | syl | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( abs ‘ ( ℑ ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) | 
						
							| 57 | 54 56 | eqbrtrrd | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) | 
						
							| 58 | 23 45 31 47 57 | ltletrd | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) | 
						
							| 59 | 22 23 31 43 58 | lelttrd | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) | 
						
							| 60 | 59 | olcd | ⊢ ( ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 61 | 60 | ralrimivva | ⊢ ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  →  ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 62 |  | oveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑞 ↑ 𝑘 )  =  ( 𝑞 ↑ 1 ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑘  =  1  →  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  =  ( 𝑥  /  ( 𝑞 ↑ 1 ) ) ) | 
						
							| 64 | 63 | breq1d | ⊢ ( 𝑘  =  1  →  ( ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) )  ↔  ( 𝑥  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 65 | 64 | orbi2d | ⊢ ( 𝑘  =  1  →  ( ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  ↔  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 66 | 65 | 2ralbidv | ⊢ ( 𝑘  =  1  →  ( ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  ↔  ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 67 |  | oveq1 | ⊢ ( 𝑥  =  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  →  ( 𝑥  /  ( 𝑞 ↑ 1 ) )  =  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) ) ) | 
						
							| 68 | 67 | breq1d | ⊢ ( 𝑥  =  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  →  ( ( 𝑥  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) )  ↔  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 69 | 68 | orbi2d | ⊢ ( 𝑥  =  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  →  ( ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  ↔  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 70 | 69 | 2ralbidv | ⊢ ( 𝑥  =  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  →  ( ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  ↔  ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 71 | 66 70 | rspc2ev | ⊢ ( ( 1  ∈  ℕ  ∧  ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  ∈  ℝ+  ∧  ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  /  2 )  /  ( 𝑞 ↑ 1 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) )  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 72 | 4 14 61 71 | mp3an2i | ⊢ ( ( 𝐴  ∈  𝔸  ∧  ¬  𝐴  ∈  ℝ )  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 73 | 3 72 | pm2.61dan | ⊢ ( 𝐴  ∈  𝔸  →  ∃ 𝑘  ∈  ℕ ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑘 ) )  <  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) |