Metamath Proof Explorer


Theorem aaliou2b

Description: Liouville's approximation theorem extended to complex A . (Contributed by Stefan O'Rear, 20-Nov-2014)

Ref Expression
Assertion aaliou2b A𝔸kx+pqA=pqxqk<Apq

Proof

Step Hyp Ref Expression
1 elin A𝔸A𝔸A
2 aaliou2 A𝔸kx+pqA=pqxqk<Apq
3 1 2 sylbir A𝔸Akx+pqA=pqxqk<Apq
4 1nn 1
5 aacn A𝔸A
6 5 adantr A𝔸¬AA
7 6 imcld A𝔸¬AA
8 7 recnd A𝔸¬AA
9 reim0b AAA=0
10 5 9 syl A𝔸AA=0
11 10 necon3bbid A𝔸¬AA0
12 11 biimpa A𝔸¬AA0
13 8 12 absrpcld A𝔸¬AA+
14 13 rphalfcld A𝔸¬AA2+
15 14 adantr A𝔸¬ApqA2+
16 1nn0 10
17 nnexpcl q10q1
18 16 17 mpan2 qq1
19 18 ad2antll A𝔸¬Apqq1
20 19 nnrpd A𝔸¬Apqq1+
21 15 20 rpdivcld A𝔸¬ApqA2q1+
22 21 rpred A𝔸¬ApqA2q1
23 15 rpred A𝔸¬ApqA2
24 6 adantr A𝔸¬ApqA
25 znq pqpq
26 25 adantl A𝔸¬Apqpq
27 qre pqpq
28 26 27 syl A𝔸¬Apqpq
29 28 recnd A𝔸¬Apqpq
30 24 29 subcld A𝔸¬ApqApq
31 30 abscld A𝔸¬ApqApq
32 19 nnge1d A𝔸¬Apq1q1
33 1rp 1+
34 rpregt0 1+10<1
35 33 34 mp1i A𝔸¬Apq10<1
36 20 rpregt0d A𝔸¬Apqq10<q1
37 15 rpregt0d A𝔸¬ApqA20<A2
38 lediv2 10<1q10<q1A20<A21q1A2q1A21
39 35 36 37 38 syl3anc A𝔸¬Apq1q1A2q1A21
40 32 39 mpbid A𝔸¬ApqA2q1A21
41 15 rpcnd A𝔸¬ApqA2
42 41 div1d A𝔸¬ApqA21=A2
43 40 42 breqtrd A𝔸¬ApqA2q1A2
44 13 adantr A𝔸¬ApqA+
45 44 rpred A𝔸¬ApqA
46 rphalflt A+A2<A
47 44 46 syl A𝔸¬ApqA2<A
48 24 29 imsubd A𝔸¬ApqApq=Apq
49 28 reim0d A𝔸¬Apqpq=0
50 49 oveq2d A𝔸¬ApqApq=A0
51 8 adantr A𝔸¬ApqA
52 51 subid1d A𝔸¬ApqA0=A
53 48 50 52 3eqtrd A𝔸¬ApqApq=A
54 53 fveq2d A𝔸¬ApqApq=A
55 absimle ApqApqApq
56 30 55 syl A𝔸¬ApqApqApq
57 54 56 eqbrtrrd A𝔸¬ApqAApq
58 23 45 31 47 57 ltletrd A𝔸¬ApqA2<Apq
59 22 23 31 43 58 lelttrd A𝔸¬ApqA2q1<Apq
60 59 olcd A𝔸¬ApqA=pqA2q1<Apq
61 60 ralrimivva A𝔸¬ApqA=pqA2q1<Apq
62 oveq2 k=1qk=q1
63 62 oveq2d k=1xqk=xq1
64 63 breq1d k=1xqk<Apqxq1<Apq
65 64 orbi2d k=1A=pqxqk<ApqA=pqxq1<Apq
66 65 2ralbidv k=1pqA=pqxqk<ApqpqA=pqxq1<Apq
67 oveq1 x=A2xq1=A2q1
68 67 breq1d x=A2xq1<ApqA2q1<Apq
69 68 orbi2d x=A2A=pqxq1<ApqA=pqA2q1<Apq
70 69 2ralbidv x=A2pqA=pqxq1<ApqpqA=pqA2q1<Apq
71 66 70 rspc2ev 1A2+pqA=pqA2q1<Apqkx+pqA=pqxqk<Apq
72 4 14 61 71 mp3an2i A𝔸¬Akx+pqA=pqxqk<Apq
73 3 72 pm2.61dan A𝔸kx+pqA=pqxqk<Apq