Description: Liouville's approximation theorem extended to complex A . (Contributed by Stefan O'Rear, 20-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | aaliou2b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | |
|
2 | aaliou2 | |
|
3 | 1 2 | sylbir | |
4 | 1nn | |
|
5 | aacn | |
|
6 | 5 | adantr | |
7 | 6 | imcld | |
8 | 7 | recnd | |
9 | reim0b | |
|
10 | 5 9 | syl | |
11 | 10 | necon3bbid | |
12 | 11 | biimpa | |
13 | 8 12 | absrpcld | |
14 | 13 | rphalfcld | |
15 | 14 | adantr | |
16 | 1nn0 | |
|
17 | nnexpcl | |
|
18 | 16 17 | mpan2 | |
19 | 18 | ad2antll | |
20 | 19 | nnrpd | |
21 | 15 20 | rpdivcld | |
22 | 21 | rpred | |
23 | 15 | rpred | |
24 | 6 | adantr | |
25 | znq | |
|
26 | 25 | adantl | |
27 | qre | |
|
28 | 26 27 | syl | |
29 | 28 | recnd | |
30 | 24 29 | subcld | |
31 | 30 | abscld | |
32 | 19 | nnge1d | |
33 | 1rp | |
|
34 | rpregt0 | |
|
35 | 33 34 | mp1i | |
36 | 20 | rpregt0d | |
37 | 15 | rpregt0d | |
38 | lediv2 | |
|
39 | 35 36 37 38 | syl3anc | |
40 | 32 39 | mpbid | |
41 | 15 | rpcnd | |
42 | 41 | div1d | |
43 | 40 42 | breqtrd | |
44 | 13 | adantr | |
45 | 44 | rpred | |
46 | rphalflt | |
|
47 | 44 46 | syl | |
48 | 24 29 | imsubd | |
49 | 28 | reim0d | |
50 | 49 | oveq2d | |
51 | 8 | adantr | |
52 | 51 | subid1d | |
53 | 48 50 52 | 3eqtrd | |
54 | 53 | fveq2d | |
55 | absimle | |
|
56 | 30 55 | syl | |
57 | 54 56 | eqbrtrrd | |
58 | 23 45 31 47 57 | ltletrd | |
59 | 22 23 31 43 58 | lelttrd | |
60 | 59 | olcd | |
61 | 60 | ralrimivva | |
62 | oveq2 | |
|
63 | 62 | oveq2d | |
64 | 63 | breq1d | |
65 | 64 | orbi2d | |
66 | 65 | 2ralbidv | |
67 | oveq1 | |
|
68 | 67 | breq1d | |
69 | 68 | orbi2d | |
70 | 69 | 2ralbidv | |
71 | 66 70 | rspc2ev | |
72 | 4 14 61 71 | mp3an2i | |
73 | 3 72 | pm2.61dan | |