Metamath Proof Explorer


Theorem aaliou2

Description: Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion aaliou2 A 𝔸 k x + p q A = p q x q k < A p q

Proof

Step Hyp Ref Expression
1 elin A 𝔸 A 𝔸 A
2 elaa A 𝔸 A a Poly 0 𝑝 a A = 0
3 eldifn a Poly 0 𝑝 ¬ a 0 𝑝
4 3 3ad2ant1 a Poly 0 𝑝 a A = 0 A ¬ a 0 𝑝
5 simpr a Poly 0 𝑝 a A = 0 A a = × a 0 a = × a 0
6 fveq1 a = × a 0 a A = × a 0 A
7 6 adantl a Poly 0 𝑝 a A = 0 A a = × a 0 a A = × a 0 A
8 simpl2 a Poly 0 𝑝 a A = 0 A a = × a 0 a A = 0
9 simpl3 a Poly 0 𝑝 a A = 0 A a = × a 0 A
10 9 recnd a Poly 0 𝑝 a A = 0 A a = × a 0 A
11 fvex a 0 V
12 11 fvconst2 A × a 0 A = a 0
13 10 12 syl a Poly 0 𝑝 a A = 0 A a = × a 0 × a 0 A = a 0
14 7 8 13 3eqtr3rd a Poly 0 𝑝 a A = 0 A a = × a 0 a 0 = 0
15 14 sneqd a Poly 0 𝑝 a A = 0 A a = × a 0 a 0 = 0
16 15 xpeq2d a Poly 0 𝑝 a A = 0 A a = × a 0 × a 0 = × 0
17 5 16 eqtrd a Poly 0 𝑝 a A = 0 A a = × a 0 a = × 0
18 df-0p 0 𝑝 = × 0
19 17 18 eqtr4di a Poly 0 𝑝 a A = 0 A a = × a 0 a = 0 𝑝
20 velsn a 0 𝑝 a = 0 𝑝
21 19 20 sylibr a Poly 0 𝑝 a A = 0 A a = × a 0 a 0 𝑝
22 4 21 mtand a Poly 0 𝑝 a A = 0 A ¬ a = × a 0
23 eldifi a Poly 0 𝑝 a Poly
24 23 3ad2ant1 a Poly 0 𝑝 a A = 0 A a Poly
25 0dgrb a Poly deg a = 0 a = × a 0
26 24 25 syl a Poly 0 𝑝 a A = 0 A deg a = 0 a = × a 0
27 22 26 mtbird a Poly 0 𝑝 a A = 0 A ¬ deg a = 0
28 dgrcl a Poly deg a 0
29 24 28 syl a Poly 0 𝑝 a A = 0 A deg a 0
30 elnn0 deg a 0 deg a deg a = 0
31 29 30 sylib a Poly 0 𝑝 a A = 0 A deg a deg a = 0
32 orel2 ¬ deg a = 0 deg a deg a = 0 deg a
33 27 31 32 sylc a Poly 0 𝑝 a A = 0 A deg a
34 eqid deg a = deg a
35 simp3 a Poly 0 𝑝 a A = 0 A A
36 simp2 a Poly 0 𝑝 a A = 0 A a A = 0
37 34 24 33 35 36 aaliou a Poly 0 𝑝 a A = 0 A x + p q A = p q x q deg a < A p q
38 oveq2 k = deg a q k = q deg a
39 38 oveq2d k = deg a x q k = x q deg a
40 39 breq1d k = deg a x q k < A p q x q deg a < A p q
41 40 orbi2d k = deg a A = p q x q k < A p q A = p q x q deg a < A p q
42 41 2ralbidv k = deg a p q A = p q x q k < A p q p q A = p q x q deg a < A p q
43 42 rexbidv k = deg a x + p q A = p q x q k < A p q x + p q A = p q x q deg a < A p q
44 43 rspcev deg a x + p q A = p q x q deg a < A p q k x + p q A = p q x q k < A p q
45 33 37 44 syl2anc a Poly 0 𝑝 a A = 0 A k x + p q A = p q x q k < A p q
46 45 3exp a Poly 0 𝑝 a A = 0 A k x + p q A = p q x q k < A p q
47 46 rexlimiv a Poly 0 𝑝 a A = 0 A k x + p q A = p q x q k < A p q
48 2 47 simplbiim A 𝔸 A k x + p q A = p q x q k < A p q
49 48 imp A 𝔸 A k x + p q A = p q x q k < A p q
50 1 49 sylbi A 𝔸 k x + p q A = p q x q k < A p q