Metamath Proof Explorer


Theorem aaliou

Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial F in integer coefficients, is not approximable beyond order N = deg ( F ) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aalioulem2.a N = deg F
aalioulem2.b φ F Poly
aalioulem2.c φ N
aalioulem2.d φ A
aalioulem3.e φ F A = 0
Assertion aaliou φ x + p q A = p q x q N < A p q

Proof

Step Hyp Ref Expression
1 aalioulem2.a N = deg F
2 aalioulem2.b φ F Poly
3 aalioulem2.c φ N
4 aalioulem2.d φ A
5 aalioulem3.e φ F A = 0
6 1 2 3 4 5 aalioulem6 φ a + p q A = p q a q N A p q
7 rphalfcl a + a 2 +
8 7 adantl φ a + a 2 +
9 7 ad2antlr φ a + p q a 2 +
10 nnrp q q +
11 10 ad2antll φ a + p q q +
12 3 nnzd φ N
13 12 ad2antrr φ a + p q N
14 11 13 rpexpcld φ a + p q q N +
15 9 14 rpdivcld φ a + p q a 2 q N +
16 15 rpred φ a + p q a 2 q N
17 simplr φ a + p q a +
18 17 14 rpdivcld φ a + p q a q N +
19 18 rpred φ a + p q a q N
20 4 adantr φ a + A
21 znq p q p q
22 qre p q p q
23 21 22 syl p q p q
24 resubcl A p q A p q
25 20 23 24 syl2an φ a + p q A p q
26 25 recnd φ a + p q A p q
27 26 abscld φ a + p q A p q
28 16 19 27 3jca φ a + p q a 2 q N a q N A p q
29 9 rpred φ a + p q a 2
30 rpre a + a
31 30 ad2antlr φ a + p q a
32 rphalflt a + a 2 < a
33 32 ad2antlr φ a + p q a 2 < a
34 29 31 14 33 ltdiv1dd φ a + p q a 2 q N < a q N
35 34 anim1i φ a + p q a q N A p q a 2 q N < a q N a q N A p q
36 35 ex φ a + p q a q N A p q a 2 q N < a q N a q N A p q
37 ltletr a 2 q N a q N A p q a 2 q N < a q N a q N A p q a 2 q N < A p q
38 28 36 37 sylsyld φ a + p q a q N A p q a 2 q N < A p q
39 38 orim2d φ a + p q A = p q a q N A p q A = p q a 2 q N < A p q
40 39 ralimdvva φ a + p q A = p q a q N A p q p q A = p q a 2 q N < A p q
41 oveq1 x = a 2 x q N = a 2 q N
42 41 breq1d x = a 2 x q N < A p q a 2 q N < A p q
43 42 orbi2d x = a 2 A = p q x q N < A p q A = p q a 2 q N < A p q
44 43 2ralbidv x = a 2 p q A = p q x q N < A p q p q A = p q a 2 q N < A p q
45 44 rspcev a 2 + p q A = p q a 2 q N < A p q x + p q A = p q x q N < A p q
46 8 40 45 syl6an φ a + p q A = p q a q N A p q x + p q A = p q x q N < A p q
47 46 rexlimdva φ a + p q A = p q a q N A p q x + p q A = p q x q N < A p q
48 6 47 mpd φ x + p q A = p q x q N < A p q