| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aalioulem2.a |
|
| 2 |
|
aalioulem2.b |
|
| 3 |
|
aalioulem2.c |
|
| 4 |
|
aalioulem2.d |
|
| 5 |
|
aalioulem3.e |
|
| 6 |
1 2 3 4 5
|
aalioulem6 |
|
| 7 |
|
rphalfcl |
|
| 8 |
7
|
adantl |
|
| 9 |
7
|
ad2antlr |
|
| 10 |
|
nnrp |
|
| 11 |
10
|
ad2antll |
|
| 12 |
3
|
nnzd |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
11 13
|
rpexpcld |
|
| 15 |
9 14
|
rpdivcld |
|
| 16 |
15
|
rpred |
|
| 17 |
|
simplr |
|
| 18 |
17 14
|
rpdivcld |
|
| 19 |
18
|
rpred |
|
| 20 |
4
|
adantr |
|
| 21 |
|
znq |
|
| 22 |
|
qre |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
resubcl |
|
| 25 |
20 23 24
|
syl2an |
|
| 26 |
25
|
recnd |
|
| 27 |
26
|
abscld |
|
| 28 |
16 19 27
|
3jca |
|
| 29 |
9
|
rpred |
|
| 30 |
|
rpre |
|
| 31 |
30
|
ad2antlr |
|
| 32 |
|
rphalflt |
|
| 33 |
32
|
ad2antlr |
|
| 34 |
29 31 14 33
|
ltdiv1dd |
|
| 35 |
34
|
anim1i |
|
| 36 |
35
|
ex |
|
| 37 |
|
ltletr |
|
| 38 |
28 36 37
|
sylsyld |
|
| 39 |
38
|
orim2d |
|
| 40 |
39
|
ralimdvva |
|
| 41 |
|
oveq1 |
|
| 42 |
41
|
breq1d |
|
| 43 |
42
|
orbi2d |
|
| 44 |
43
|
2ralbidv |
|
| 45 |
44
|
rspcev |
|
| 46 |
8 40 45
|
syl6an |
|
| 47 |
46
|
rexlimdva |
|
| 48 |
6 47
|
mpd |
|