| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aalioulem2.a |
|
| 2 |
|
aalioulem2.b |
|
| 3 |
|
aalioulem2.c |
|
| 4 |
|
aalioulem2.d |
|
| 5 |
|
aalioulem3.e |
|
| 6 |
1 2 3 4
|
aalioulem2 |
|
| 7 |
1 2 3 4 5
|
aalioulem5 |
|
| 8 |
|
reeanv |
|
| 9 |
6 7 8
|
sylanbrc |
|
| 10 |
|
r19.26-2 |
|
| 11 |
|
ifcl |
|
| 12 |
11
|
adantl |
|
| 13 |
|
simpr |
|
| 14 |
11
|
ad2antlr |
|
| 15 |
|
nnrp |
|
| 16 |
15
|
ad2antll |
|
| 17 |
3
|
ad2antrr |
|
| 18 |
17
|
nnzd |
|
| 19 |
16 18
|
rpexpcld |
|
| 20 |
14 19
|
rpdivcld |
|
| 21 |
20
|
rpred |
|
| 22 |
|
simplrl |
|
| 23 |
22 19
|
rpdivcld |
|
| 24 |
23
|
rpred |
|
| 25 |
4
|
ad2antrr |
|
| 26 |
|
znq |
|
| 27 |
|
qre |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
adantl |
|
| 30 |
25 29
|
resubcld |
|
| 31 |
30
|
recnd |
|
| 32 |
31
|
abscld |
|
| 33 |
21 24 32
|
3jca |
|
| 34 |
33
|
adantr |
|
| 35 |
14
|
rpred |
|
| 36 |
22
|
rpred |
|
| 37 |
|
simplrr |
|
| 38 |
37
|
rpred |
|
| 39 |
|
min1 |
|
| 40 |
36 38 39
|
syl2anc |
|
| 41 |
35 36 19 40
|
lediv1dd |
|
| 42 |
41
|
anim1i |
|
| 43 |
|
letr |
|
| 44 |
34 42 43
|
sylc |
|
| 45 |
44
|
ex |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
orim2d |
|
| 48 |
13 47
|
embantd |
|
| 49 |
48
|
adantrd |
|
| 50 |
|
simpr |
|
| 51 |
37 19
|
rpdivcld |
|
| 52 |
51
|
rpred |
|
| 53 |
21 52 32
|
3jca |
|
| 54 |
53
|
adantr |
|
| 55 |
|
min2 |
|
| 56 |
36 38 55
|
syl2anc |
|
| 57 |
35 38 19 56
|
lediv1dd |
|
| 58 |
57
|
anim1i |
|
| 59 |
|
letr |
|
| 60 |
54 58 59
|
sylc |
|
| 61 |
60
|
ex |
|
| 62 |
61
|
adantr |
|
| 63 |
62
|
orim2d |
|
| 64 |
50 63
|
embantd |
|
| 65 |
64
|
adantld |
|
| 66 |
49 65
|
pm2.61dane |
|
| 67 |
66
|
ralimdvva |
|
| 68 |
|
oveq1 |
|
| 69 |
68
|
breq1d |
|
| 70 |
69
|
orbi2d |
|
| 71 |
70
|
2ralbidv |
|
| 72 |
71
|
rspcev |
|
| 73 |
12 67 72
|
syl6an |
|
| 74 |
10 73
|
biimtrrid |
|
| 75 |
74
|
rexlimdvva |
|
| 76 |
9 75
|
mpd |
|