| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aalioulem2.a |
|
| 2 |
|
aalioulem2.b |
|
| 3 |
|
aalioulem2.c |
|
| 4 |
|
aalioulem2.d |
|
| 5 |
|
aalioulem3.e |
|
| 6 |
1 2 3 4 5
|
aalioulem4 |
|
| 7 |
|
simpr |
|
| 8 |
|
1rp |
|
| 9 |
|
ifcl |
|
| 10 |
7 8 9
|
sylancl |
|
| 11 |
10
|
adantr |
|
| 12 |
|
simprr |
|
| 13 |
12
|
nnrpd |
|
| 14 |
3
|
ad2antrr |
|
| 15 |
14
|
nnzd |
|
| 16 |
13 15
|
rpexpcld |
|
| 17 |
11 16
|
rpdivcld |
|
| 18 |
17
|
rpred |
|
| 19 |
|
1re |
|
| 20 |
19
|
a1i |
|
| 21 |
4
|
ad2antrr |
|
| 22 |
|
znq |
|
| 23 |
|
qre |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
adantl |
|
| 26 |
21 25
|
resubcld |
|
| 27 |
26
|
recnd |
|
| 28 |
27
|
abscld |
|
| 29 |
18 20 28
|
3jca |
|
| 30 |
29
|
adantr |
|
| 31 |
16
|
rprecred |
|
| 32 |
11
|
rpred |
|
| 33 |
|
simplr |
|
| 34 |
33
|
rpred |
|
| 35 |
|
min2 |
|
| 36 |
34 19 35
|
sylancl |
|
| 37 |
32 20 16 36
|
lediv1dd |
|
| 38 |
14
|
nnnn0d |
|
| 39 |
12 38
|
nnexpcld |
|
| 40 |
|
1nn |
|
| 41 |
40
|
a1i |
|
| 42 |
39 41
|
nnmulcld |
|
| 43 |
42
|
nnge1d |
|
| 44 |
20 20 16
|
ledivmuld |
|
| 45 |
43 44
|
mpbird |
|
| 46 |
18 31 20 37 45
|
letrd |
|
| 47 |
46
|
adantr |
|
| 48 |
|
ltle |
|
| 49 |
19 28 48
|
sylancr |
|
| 50 |
49
|
imp |
|
| 51 |
47 50
|
jca |
|
| 52 |
|
letr |
|
| 53 |
30 51 52
|
sylc |
|
| 54 |
53
|
olcd |
|
| 55 |
54
|
2a1d |
|
| 56 |
|
pm3.21 |
|
| 57 |
56
|
adantl |
|
| 58 |
33 16
|
rpdivcld |
|
| 59 |
58
|
rpred |
|
| 60 |
18 59 28
|
3jca |
|
| 61 |
60
|
adantr |
|
| 62 |
|
min1 |
|
| 63 |
34 19 62
|
sylancl |
|
| 64 |
32 34 16 63
|
lediv1dd |
|
| 65 |
64
|
anim1i |
|
| 66 |
|
letr |
|
| 67 |
61 65 66
|
sylc |
|
| 68 |
67
|
ex |
|
| 69 |
68
|
adantr |
|
| 70 |
69
|
orim2d |
|
| 71 |
57 70
|
imim12d |
|
| 72 |
55 71 20 28
|
ltlecasei |
|
| 73 |
72
|
ralimdvva |
|
| 74 |
|
oveq1 |
|
| 75 |
74
|
breq1d |
|
| 76 |
75
|
orbi2d |
|
| 77 |
76
|
imbi2d |
|
| 78 |
77
|
2ralbidv |
|
| 79 |
78
|
rspcev |
|
| 80 |
10 73 79
|
syl6an |
|
| 81 |
80
|
rexlimdva |
|
| 82 |
6 81
|
mpd |
|