| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.a | ⊢ 𝐺  =  ( 𝑐  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) ) ) ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑐  =  𝐵  →  ( 𝑐  −  𝐴 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑐  =  𝐵  →  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) )  =  ( ( 1  /  2 ) ↑ ( 𝐵  −  𝐴 ) ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑐  =  𝐵  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝑐  −  𝐴 ) ) )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐵  −  𝐴 ) ) ) ) | 
						
							| 5 |  | ovex | ⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐵  −  𝐴 ) ) )  ∈  V | 
						
							| 6 | 4 1 5 | fvmpt | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐺 ‘ 𝐵 )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐵  −  𝐴 ) ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐺 ‘ 𝐵 )  =  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐵  −  𝐴 ) ) ) ) | 
						
							| 8 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 9 |  | simpl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝐴  ∈  ℕ ) | 
						
							| 10 | 9 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 11 | 10 | faccld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 12 | 11 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ! ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 13 | 12 | znegcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  - ( ! ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 14 |  | rpexpcl | ⊢ ( ( 2  ∈  ℝ+  ∧  - ( ! ‘ 𝐴 )  ∈  ℤ )  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 15 | 8 13 14 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 2 ↑ - ( ! ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 16 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 17 |  | halfgt0 | ⊢ 0  <  ( 1  /  2 ) | 
						
							| 18 | 16 17 | elrpii | ⊢ ( 1  /  2 )  ∈  ℝ+ | 
						
							| 19 |  | eluzelz | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐵  ∈  ℤ ) | 
						
							| 20 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 21 |  | zsubcl | ⊢ ( ( 𝐵  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝐵  −  𝐴 )  ∈  ℤ ) | 
						
							| 22 | 19 20 21 | syl2anr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐵  −  𝐴 )  ∈  ℤ ) | 
						
							| 23 |  | rpexpcl | ⊢ ( ( ( 1  /  2 )  ∈  ℝ+  ∧  ( 𝐵  −  𝐴 )  ∈  ℤ )  →  ( ( 1  /  2 ) ↑ ( 𝐵  −  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 24 | 18 22 23 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 1  /  2 ) ↑ ( 𝐵  −  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 25 | 15 24 | rpmulcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐵  −  𝐴 ) ) )  ∈  ℝ+ ) | 
						
							| 26 | 25 | rpred | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ( 2 ↑ - ( ! ‘ 𝐴 ) )  ·  ( ( 1  /  2 ) ↑ ( 𝐵  −  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 27 | 7 26 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐺 ‘ 𝐵 )  ∈  ℝ ) |