| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aaliou3lem.a |
⊢ 𝐺 = ( 𝑐 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) ) |
| 2 |
|
aaliou3lem.b |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) |
| 3 |
|
eluznn |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐵 ∈ ℕ ) |
| 4 |
|
fveq2 |
⊢ ( 𝑎 = 𝐵 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝐵 ) ) |
| 5 |
4
|
negeqd |
⊢ ( 𝑎 = 𝐵 → - ( ! ‘ 𝑎 ) = - ( ! ‘ 𝐵 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑎 = 𝐵 → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ 𝐵 ) ) ) |
| 7 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ 𝐵 ) ) ∈ V |
| 8 |
6 2 7
|
fvmpt |
⊢ ( 𝐵 ∈ ℕ → ( 𝐹 ‘ 𝐵 ) = ( 2 ↑ - ( ! ‘ 𝐵 ) ) ) |
| 9 |
3 8
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐵 ) = ( 2 ↑ - ( ! ‘ 𝐵 ) ) ) |
| 10 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 11 |
3
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐵 ∈ ℕ0 ) |
| 12 |
11
|
faccld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝐵 ) ∈ ℕ ) |
| 13 |
12
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝐵 ) ∈ ℤ ) |
| 14 |
13
|
znegcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ 𝐵 ) ∈ ℤ ) |
| 15 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝐵 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝐵 ) ) ∈ ℝ+ ) |
| 16 |
10 14 15
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝐵 ) ) ∈ ℝ+ ) |
| 17 |
9 16
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ+ ) |
| 18 |
17
|
rpred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 19 |
17
|
rpgt0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 0 < ( 𝐹 ‘ 𝐵 ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 22 |
20 21
|
breq12d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝐴 ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑏 = 𝑑 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑏 = 𝑑 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑑 ) ) |
| 26 |
24 25
|
breq12d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) ) ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ ( 𝑑 + 1 ) ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) |
| 30 |
28 29
|
breq12d |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) ) |
| 31 |
30
|
imbi2d |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) ) ) |
| 32 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝐵 ) ) |
| 34 |
32 33
|
breq12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) |
| 35 |
34
|
imbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 36 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
| 37 |
36
|
faccld |
⊢ ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) ∈ ℕ ) |
| 38 |
37
|
nnzd |
⊢ ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) ∈ ℤ ) |
| 39 |
38
|
znegcld |
⊢ ( 𝐴 ∈ ℕ → - ( ! ‘ 𝐴 ) ∈ ℤ ) |
| 40 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝐴 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 41 |
10 39 40
|
sylancr |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 42 |
41
|
rpred |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ ) |
| 43 |
42
|
leidd |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ≤ ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) |
| 44 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
| 45 |
44
|
subidd |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 − 𝐴 ) = 0 ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝐴 ∈ ℕ → ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) = ( ( 1 / 2 ) ↑ 0 ) ) |
| 47 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 48 |
|
exp0 |
⊢ ( ( 1 / 2 ) ∈ ℂ → ( ( 1 / 2 ) ↑ 0 ) = 1 ) |
| 49 |
47 48
|
ax-mp |
⊢ ( ( 1 / 2 ) ↑ 0 ) = 1 |
| 50 |
46 49
|
eqtrdi |
⊢ ( 𝐴 ∈ ℕ → ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) = 1 ) |
| 51 |
50
|
oveq2d |
⊢ ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 1 ) ) |
| 52 |
41
|
rpcnd |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ) |
| 53 |
52
|
mulridd |
⊢ ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · 1 ) = ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) |
| 54 |
51 53
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) = ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) |
| 55 |
43 54
|
breqtrrd |
⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝐴 ) ) |
| 57 |
56
|
negeqd |
⊢ ( 𝑎 = 𝐴 → - ( ! ‘ 𝑎 ) = - ( ! ‘ 𝐴 ) ) |
| 58 |
57
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) |
| 59 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ V |
| 60 |
58 2 59
|
fvmpt |
⊢ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐴 ) = ( 2 ↑ - ( ! ‘ 𝐴 ) ) ) |
| 61 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
| 62 |
|
uzid |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 63 |
|
oveq1 |
⊢ ( 𝑐 = 𝐴 → ( 𝑐 − 𝐴 ) = ( 𝐴 − 𝐴 ) ) |
| 64 |
63
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) = ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) |
| 65 |
64
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) ) |
| 66 |
|
ovex |
⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) ∈ V |
| 67 |
65 1 66
|
fvmpt |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐺 ‘ 𝐴 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) ) |
| 68 |
61 62 67
|
3syl |
⊢ ( 𝐴 ∈ ℕ → ( 𝐺 ‘ 𝐴 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝐴 − 𝐴 ) ) ) ) |
| 69 |
55 60 68
|
3brtr4d |
⊢ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝐴 ) ) |
| 70 |
|
eluznn |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝑑 ∈ ℕ ) |
| 71 |
70
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝑑 ∈ ℕ0 ) |
| 72 |
71
|
faccld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝑑 ) ∈ ℕ ) |
| 73 |
72
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝑑 ) ∈ ℤ ) |
| 74 |
73
|
znegcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ 𝑑 ) ∈ ℤ ) |
| 75 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝑑 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ+ ) |
| 76 |
10 74 75
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ+ ) |
| 77 |
76
|
rpred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ ) |
| 78 |
76
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 0 ≤ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) |
| 79 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐴 ∈ ℕ ) |
| 80 |
79
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐴 ∈ ℕ0 ) |
| 81 |
80
|
faccld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℕ ) |
| 82 |
81
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝐴 ) ∈ ℤ ) |
| 83 |
82
|
znegcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ 𝐴 ) ∈ ℤ ) |
| 84 |
10 83 40
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 85 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 86 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
| 87 |
85 86
|
elrpii |
⊢ ( 1 / 2 ) ∈ ℝ+ |
| 88 |
|
eluzelz |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑑 ∈ ℤ ) |
| 89 |
|
zsubcl |
⊢ ( ( 𝑑 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑑 − 𝐴 ) ∈ ℤ ) |
| 90 |
88 61 89
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑑 − 𝐴 ) ∈ ℤ ) |
| 91 |
|
rpexpcl |
⊢ ( ( ( 1 / 2 ) ∈ ℝ+ ∧ ( 𝑑 − 𝐴 ) ∈ ℤ ) → ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ∈ ℝ+ ) |
| 92 |
87 90 91
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ∈ ℝ+ ) |
| 93 |
84 92
|
rpmulcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ+ ) |
| 94 |
93
|
rpred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ ) |
| 95 |
77 78 94
|
jca31 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) ∧ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ ) ) |
| 96 |
95
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) ∧ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) → ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) ∧ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ ) ) |
| 97 |
88
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝑑 ∈ ℤ ) |
| 98 |
74 97
|
zmulcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℤ ) |
| 99 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℤ ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ+ ) |
| 100 |
10 98 99
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ+ ) |
| 101 |
100
|
rpred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ ) |
| 102 |
100
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 0 ≤ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
| 103 |
85
|
a1i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 1 / 2 ) ∈ ℝ ) |
| 104 |
101 102 103
|
jca31 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ∧ ( 1 / 2 ) ∈ ℝ ) ) |
| 105 |
104
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) ∧ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) → ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ∧ ( 1 / 2 ) ∈ ℝ ) ) |
| 106 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) ∧ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) → ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) |
| 107 |
|
2re |
⊢ 2 ∈ ℝ |
| 108 |
|
1le2 |
⊢ 1 ≤ 2 |
| 109 |
72
|
nncnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ 𝑑 ) ∈ ℂ ) |
| 110 |
97
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝑑 ∈ ℂ ) |
| 111 |
109 110
|
mulneg1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · 𝑑 ) = - ( ( ! ‘ 𝑑 ) · 𝑑 ) ) |
| 112 |
72 70
|
nnmulcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℕ ) |
| 113 |
112
|
nnge1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 1 ≤ ( ( ! ‘ 𝑑 ) · 𝑑 ) ) |
| 114 |
|
1re |
⊢ 1 ∈ ℝ |
| 115 |
112
|
nnred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℝ ) |
| 116 |
|
leneg |
⊢ ( ( 1 ∈ ℝ ∧ ( ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℝ ) → ( 1 ≤ ( ( ! ‘ 𝑑 ) · 𝑑 ) ↔ - ( ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) ) |
| 117 |
114 115 116
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 1 ≤ ( ( ! ‘ 𝑑 ) · 𝑑 ) ↔ - ( ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) ) |
| 118 |
113 117
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) |
| 119 |
111 118
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) |
| 120 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 121 |
|
eluz |
⊢ ( ( ( - ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℤ ∧ - 1 ∈ ℤ ) → ( - 1 ∈ ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ↔ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) ) |
| 122 |
98 120 121
|
sylancl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - 1 ∈ ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ↔ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ≤ - 1 ) ) |
| 123 |
119 122
|
mpbird |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - 1 ∈ ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
| 124 |
|
leexp2a |
⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ - 1 ∈ ( ℤ≥ ‘ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 2 ↑ - 1 ) ) |
| 125 |
107 108 123 124
|
mp3an12i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 2 ↑ - 1 ) ) |
| 126 |
|
2cn |
⊢ 2 ∈ ℂ |
| 127 |
|
expn1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ - 1 ) = ( 1 / 2 ) ) |
| 128 |
126 127
|
ax-mp |
⊢ ( 2 ↑ - 1 ) = ( 1 / 2 ) |
| 129 |
125 128
|
breqtrdi |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 1 / 2 ) ) |
| 130 |
129
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) ∧ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 1 / 2 ) ) |
| 131 |
|
lemul12a |
⊢ ( ( ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) ∧ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ ) ∧ ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ∧ ( 1 / 2 ) ∈ ℝ ) ) → ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∧ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 1 / 2 ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ≤ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) ) |
| 132 |
131
|
3impia |
⊢ ( ( ( ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) ∧ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ ℝ ) ∧ ( ( ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ∧ ( 1 / 2 ) ∈ ℝ ) ∧ ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∧ ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ≤ ( 1 / 2 ) ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ≤ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) |
| 133 |
96 105 106 130 132
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) ∧ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ≤ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) |
| 134 |
133
|
ex |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ≤ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) ) |
| 135 |
|
facp1 |
⊢ ( 𝑑 ∈ ℕ0 → ( ! ‘ ( 𝑑 + 1 ) ) = ( ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) ) |
| 136 |
71 135
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ! ‘ ( 𝑑 + 1 ) ) = ( ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) ) |
| 137 |
136
|
negeqd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ ( 𝑑 + 1 ) ) = - ( ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) ) |
| 138 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 139 |
|
addcom |
⊢ ( ( 𝑑 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑑 + 1 ) = ( 1 + 𝑑 ) ) |
| 140 |
110 138 139
|
sylancl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑑 + 1 ) = ( 1 + 𝑑 ) ) |
| 141 |
140
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) = ( - ( ! ‘ 𝑑 ) · ( 1 + 𝑑 ) ) ) |
| 142 |
|
peano2cn |
⊢ ( 𝑑 ∈ ℂ → ( 𝑑 + 1 ) ∈ ℂ ) |
| 143 |
110 142
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑑 + 1 ) ∈ ℂ ) |
| 144 |
109 143
|
mulneg1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) = - ( ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) ) |
| 145 |
74
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ 𝑑 ) ∈ ℂ ) |
| 146 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 1 ∈ ℂ ) |
| 147 |
145 146 110
|
adddid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · ( 1 + 𝑑 ) ) = ( ( - ( ! ‘ 𝑑 ) · 1 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
| 148 |
145
|
mulridd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · 1 ) = - ( ! ‘ 𝑑 ) ) |
| 149 |
148
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( - ( ! ‘ 𝑑 ) · 1 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) = ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
| 150 |
147 149
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( - ( ! ‘ 𝑑 ) · ( 1 + 𝑑 ) ) = ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
| 151 |
141 144 150
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ( ! ‘ 𝑑 ) · ( 𝑑 + 1 ) ) = ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
| 152 |
137 151
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → - ( ! ‘ ( 𝑑 + 1 ) ) = ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) |
| 153 |
152
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) = ( 2 ↑ ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ) |
| 154 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 155 |
|
expaddz |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( - ( ! ‘ 𝑑 ) ∈ ℤ ∧ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℤ ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ) |
| 156 |
154 155
|
mpan |
⊢ ( ( - ( ! ‘ 𝑑 ) ∈ ℤ ∧ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ∈ ℤ ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ) |
| 157 |
74 98 156
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ ( - ( ! ‘ 𝑑 ) + ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ) |
| 158 |
153 157
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ) |
| 159 |
44
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 160 |
110 146 159
|
addsubd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝑑 + 1 ) − 𝐴 ) = ( ( 𝑑 − 𝐴 ) + 1 ) ) |
| 161 |
160
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) = ( ( 1 / 2 ) ↑ ( ( 𝑑 − 𝐴 ) + 1 ) ) ) |
| 162 |
|
uznn0sub |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑑 − 𝐴 ) ∈ ℕ0 ) |
| 163 |
162
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑑 − 𝐴 ) ∈ ℕ0 ) |
| 164 |
|
expp1 |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( 𝑑 − 𝐴 ) ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ ( ( 𝑑 − 𝐴 ) + 1 ) ) = ( ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) · ( 1 / 2 ) ) ) |
| 165 |
47 163 164
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( ( 𝑑 − 𝐴 ) + 1 ) ) = ( ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) · ( 1 / 2 ) ) ) |
| 166 |
161 165
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) = ( ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) · ( 1 / 2 ) ) ) |
| 167 |
166
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) · ( 1 / 2 ) ) ) ) |
| 168 |
84
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 2 ↑ - ( ! ‘ 𝐴 ) ) ∈ ℂ ) |
| 169 |
92
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ∈ ℂ ) |
| 170 |
47
|
a1i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 1 / 2 ) ∈ ℂ ) |
| 171 |
168 169 170
|
mulassd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) · ( 1 / 2 ) ) ) ) |
| 172 |
167 171
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) = ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) |
| 173 |
158 172
|
breq12d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ↔ ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) · ( 2 ↑ ( - ( ! ‘ 𝑑 ) · 𝑑 ) ) ) ≤ ( ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) · ( 1 / 2 ) ) ) ) |
| 174 |
134 173
|
sylibrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) → ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) ) |
| 175 |
|
fveq2 |
⊢ ( 𝑎 = 𝑑 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝑑 ) ) |
| 176 |
175
|
negeqd |
⊢ ( 𝑎 = 𝑑 → - ( ! ‘ 𝑎 ) = - ( ! ‘ 𝑑 ) ) |
| 177 |
176
|
oveq2d |
⊢ ( 𝑎 = 𝑑 → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) |
| 178 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ∈ V |
| 179 |
177 2 178
|
fvmpt |
⊢ ( 𝑑 ∈ ℕ → ( 𝐹 ‘ 𝑑 ) = ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) |
| 180 |
70 179
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑑 ) = ( 2 ↑ - ( ! ‘ 𝑑 ) ) ) |
| 181 |
|
oveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 − 𝐴 ) = ( 𝑑 − 𝐴 ) ) |
| 182 |
181
|
oveq2d |
⊢ ( 𝑐 = 𝑑 → ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) = ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) |
| 183 |
182
|
oveq2d |
⊢ ( 𝑐 = 𝑑 → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) |
| 184 |
|
ovex |
⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ∈ V |
| 185 |
183 1 184
|
fvmpt |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐺 ‘ 𝑑 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) |
| 186 |
185
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑑 ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) |
| 187 |
180 186
|
breq12d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) ↔ ( 2 ↑ - ( ! ‘ 𝑑 ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑑 − 𝐴 ) ) ) ) ) |
| 188 |
70
|
peano2nnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑑 + 1 ) ∈ ℕ ) |
| 189 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ! ‘ 𝑎 ) = ( ! ‘ ( 𝑑 + 1 ) ) ) |
| 190 |
189
|
negeqd |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → - ( ! ‘ 𝑎 ) = - ( ! ‘ ( 𝑑 + 1 ) ) ) |
| 191 |
190
|
oveq2d |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ) |
| 192 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ∈ V |
| 193 |
191 2 192
|
fvmpt |
⊢ ( ( 𝑑 + 1 ) ∈ ℕ → ( 𝐹 ‘ ( 𝑑 + 1 ) ) = ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ) |
| 194 |
188 193
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ ( 𝑑 + 1 ) ) = ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ) |
| 195 |
|
peano2uz |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑑 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 196 |
|
oveq1 |
⊢ ( 𝑐 = ( 𝑑 + 1 ) → ( 𝑐 − 𝐴 ) = ( ( 𝑑 + 1 ) − 𝐴 ) ) |
| 197 |
196
|
oveq2d |
⊢ ( 𝑐 = ( 𝑑 + 1 ) → ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) = ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) |
| 198 |
197
|
oveq2d |
⊢ ( 𝑐 = ( 𝑑 + 1 ) → ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( 𝑐 − 𝐴 ) ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) |
| 199 |
|
ovex |
⊢ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ∈ V |
| 200 |
198 1 199
|
fvmpt |
⊢ ( ( 𝑑 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐺 ‘ ( 𝑑 + 1 ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) |
| 201 |
195 200
|
syl |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐺 ‘ ( 𝑑 + 1 ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) |
| 202 |
201
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑑 + 1 ) ) = ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) |
| 203 |
194 202
|
breq12d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ↔ ( 2 ↑ - ( ! ‘ ( 𝑑 + 1 ) ) ) ≤ ( ( 2 ↑ - ( ! ‘ 𝐴 ) ) · ( ( 1 / 2 ) ↑ ( ( 𝑑 + 1 ) − 𝐴 ) ) ) ) ) |
| 204 |
174 187 203
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) → ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) ) |
| 205 |
204
|
expcom |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ∈ ℕ → ( ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) → ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) ) ) |
| 206 |
205
|
a2d |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝑑 ) ≤ ( 𝐺 ‘ 𝑑 ) ) → ( 𝐴 ∈ ℕ → ( 𝐹 ‘ ( 𝑑 + 1 ) ) ≤ ( 𝐺 ‘ ( 𝑑 + 1 ) ) ) ) ) |
| 207 |
23 27 31 35 69 206
|
uzind4i |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) |
| 208 |
207
|
impcom |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) |
| 209 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 210 |
1
|
aaliou3lem1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
| 211 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 0 (,] ( 𝐺 ‘ 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 212 |
209 210 211
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 0 (,] ( 𝐺 ‘ 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 213 |
18 19 208 212
|
mpbir3and |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 0 (,] ( 𝐺 ‘ 𝐵 ) ) ) |