Metamath Proof Explorer


Theorem cvgcmp

Description: A comparison test for convergence of a real infinite series. Exercise 3 of Gleason p. 182. (Contributed by NM, 1-May-2005) (Revised by Mario Carneiro, 24-Mar-2014)

Ref Expression
Hypotheses cvgcmp.1 Z = M
cvgcmp.2 φ N Z
cvgcmp.3 φ k Z F k
cvgcmp.4 φ k Z G k
cvgcmp.5 φ seq M + F dom
cvgcmp.6 φ k N 0 G k
cvgcmp.7 φ k N G k F k
Assertion cvgcmp φ seq M + G dom

Proof

Step Hyp Ref Expression
1 cvgcmp.1 Z = M
2 cvgcmp.2 φ N Z
3 cvgcmp.3 φ k Z F k
4 cvgcmp.4 φ k Z G k
5 cvgcmp.5 φ seq M + F dom
6 cvgcmp.6 φ k N 0 G k
7 cvgcmp.7 φ k N G k F k
8 seqex seq M + G V
9 8 a1i φ seq M + G V
10 2 1 eleqtrdi φ N M
11 eluzel2 N M M
12 10 11 syl φ M
13 1 climcau M seq M + F dom x + m Z n m seq M + F n seq M + F m < x
14 12 5 13 syl2anc φ x + m Z n m seq M + F n seq M + F m < x
15 1 12 3 serfre φ seq M + F : Z
16 15 ffvelrnda φ n Z seq M + F n
17 16 recnd φ n Z seq M + F n
18 17 ralrimiva φ n Z seq M + F n
19 1 r19.29uz n Z seq M + F n m Z n m seq M + F n seq M + F m < x m Z n m seq M + F n seq M + F n seq M + F m < x
20 19 ex n Z seq M + F n m Z n m seq M + F n seq M + F m < x m Z n m seq M + F n seq M + F n seq M + F m < x
21 18 20 syl φ m Z n m seq M + F n seq M + F m < x m Z n m seq M + F n seq M + F n seq M + F m < x
22 21 ralimdv φ x + m Z n m seq M + F n seq M + F m < x x + m Z n m seq M + F n seq M + F n seq M + F m < x
23 14 22 mpd φ x + m Z n m seq M + F n seq M + F n seq M + F m < x
24 1 uztrn2 N Z n N n Z
25 2 24 sylan φ n N n Z
26 1 12 4 serfre φ seq M + G : Z
27 26 ffvelrnda φ n Z seq M + G n
28 27 recnd φ n Z seq M + G n
29 25 28 syldan φ n N seq M + G n
30 29 ralrimiva φ n N seq M + G n
31 30 adantr φ x + n N seq M + G n
32 simpll φ x + m N n m φ
33 32 15 syl φ x + m N n m seq M + F : Z
34 32 2 syl φ x + m N n m N Z
35 simprl φ x + m N n m m N
36 1 uztrn2 N Z m N m Z
37 34 35 36 syl2anc φ x + m N n m m Z
38 33 37 ffvelrnd φ x + m N n m seq M + F m
39 eqid N = N
40 39 uztrn2 m N n m n N
41 40 adantl φ x + m N n m n N
42 34 41 24 syl2anc φ x + m N n m n Z
43 32 42 16 syl2anc φ x + m N n m seq M + F n
44 32 42 27 syl2anc φ x + m N n m seq M + G n
45 32 26 syl φ x + m N n m seq M + G : Z
46 45 37 ffvelrnd φ x + m N n m seq M + G m
47 44 46 resubcld φ x + m N n m seq M + G n seq M + G m
48 37 1 eleqtrdi φ x + m N n m m M
49 simprr φ x + m N n m n m
50 elfzuz k M n k M
51 50 1 eleqtrrdi k M n k Z
52 fveq2 m = k F m = F k
53 fveq2 m = k G m = G k
54 52 53 oveq12d m = k F m G m = F k G k
55 eqid m Z F m G m = m Z F m G m
56 ovex F k G k V
57 54 55 56 fvmpt k Z m Z F m G m k = F k G k
58 57 adantl φ k Z m Z F m G m k = F k G k
59 3 4 resubcld φ k Z F k G k
60 58 59 eqeltrd φ k Z m Z F m G m k
61 32 51 60 syl2an φ x + m N n m k M n m Z F m G m k
62 elfzuz k m + 1 n k m + 1
63 peano2uz m N m + 1 N
64 35 63 syl φ x + m N n m m + 1 N
65 39 uztrn2 m + 1 N k m + 1 k N
66 64 65 sylan φ x + m N n m k m + 1 k N
67 1 uztrn2 N Z k N k Z
68 2 67 sylan φ k N k Z
69 3 4 subge0d φ k Z 0 F k G k G k F k
70 68 69 syldan φ k N 0 F k G k G k F k
71 7 70 mpbird φ k N 0 F k G k
72 68 57 syl φ k N m Z F m G m k = F k G k
73 71 72 breqtrrd φ k N 0 m Z F m G m k
74 32 66 73 syl2an2r φ x + m N n m k m + 1 0 m Z F m G m k
75 62 74 sylan2 φ x + m N n m k m + 1 n 0 m Z F m G m k
76 48 49 61 75 sermono φ x + m N n m seq M + m Z F m G m m seq M + m Z F m G m n
77 elfzuz k M m k M
78 77 1 eleqtrrdi k M m k Z
79 3 recnd φ k Z F k
80 32 78 79 syl2an φ x + m N n m k M m F k
81 4 recnd φ k Z G k
82 32 78 81 syl2an φ x + m N n m k M m G k
83 32 78 58 syl2an φ x + m N n m k M m m Z F m G m k = F k G k
84 48 80 82 83 sersub φ x + m N n m seq M + m Z F m G m m = seq M + F m seq M + G m
85 42 1 eleqtrdi φ x + m N n m n M
86 32 51 79 syl2an φ x + m N n m k M n F k
87 32 51 81 syl2an φ x + m N n m k M n G k
88 32 51 58 syl2an φ x + m N n m k M n m Z F m G m k = F k G k
89 85 86 87 88 sersub φ x + m N n m seq M + m Z F m G m n = seq M + F n seq M + G n
90 76 84 89 3brtr3d φ x + m N n m seq M + F m seq M + G m seq M + F n seq M + G n
91 43 44 resubcld φ x + m N n m seq M + F n seq M + G n
92 38 46 91 lesubaddd φ x + m N n m seq M + F m seq M + G m seq M + F n seq M + G n seq M + F m seq M + F n - seq M + G n + seq M + G m
93 90 92 mpbid φ x + m N n m seq M + F m seq M + F n - seq M + G n + seq M + G m
94 43 recnd φ x + m N n m seq M + F n
95 44 recnd φ x + m N n m seq M + G n
96 46 recnd φ x + m N n m seq M + G m
97 94 95 96 subsubd φ x + m N n m seq M + F n seq M + G n seq M + G m = seq M + F n - seq M + G n + seq M + G m
98 93 97 breqtrrd φ x + m N n m seq M + F m seq M + F n seq M + G n seq M + G m
99 38 43 47 98 lesubd φ x + m N n m seq M + G n seq M + G m seq M + F n seq M + F m
100 43 38 resubcld φ x + m N n m seq M + F n seq M + F m
101 rpre x + x
102 101 ad2antlr φ x + m N n m x
103 lelttr seq M + G n seq M + G m seq M + F n seq M + F m x seq M + G n seq M + G m seq M + F n seq M + F m seq M + F n seq M + F m < x seq M + G n seq M + G m < x
104 47 100 102 103 syl3anc φ x + m N n m seq M + G n seq M + G m seq M + F n seq M + F m seq M + F n seq M + F m < x seq M + G n seq M + G m < x
105 99 104 mpand φ x + m N n m seq M + F n seq M + F m < x seq M + G n seq M + G m < x
106 32 51 3 syl2an φ x + m N n m k M n F k
107 62 66 sylan2 φ x + m N n m k m + 1 n k N
108 0red φ k N 0
109 68 4 syldan φ k N G k
110 68 3 syldan φ k N F k
111 108 109 110 6 7 letrd φ k N 0 F k
112 32 107 111 syl2an2r φ x + m N n m k m + 1 n 0 F k
113 48 49 106 112 sermono φ x + m N n m seq M + F m seq M + F n
114 38 43 113 abssubge0d φ x + m N n m seq M + F n seq M + F m = seq M + F n seq M + F m
115 114 breq1d φ x + m N n m seq M + F n seq M + F m < x seq M + F n seq M + F m < x
116 32 51 4 syl2an φ x + m N n m k M n G k
117 32 66 6 syl2an2r φ x + m N n m k m + 1 0 G k
118 62 117 sylan2 φ x + m N n m k m + 1 n 0 G k
119 48 49 116 118 sermono φ x + m N n m seq M + G m seq M + G n
120 46 44 119 abssubge0d φ x + m N n m seq M + G n seq M + G m = seq M + G n seq M + G m
121 120 breq1d φ x + m N n m seq M + G n seq M + G m < x seq M + G n seq M + G m < x
122 105 115 121 3imtr4d φ x + m N n m seq M + F n seq M + F m < x seq M + G n seq M + G m < x
123 122 anassrs φ x + m N n m seq M + F n seq M + F m < x seq M + G n seq M + G m < x
124 123 adantld φ x + m N n m seq M + F n seq M + F n seq M + F m < x seq M + G n seq M + G m < x
125 124 ralimdva φ x + m N n m seq M + F n seq M + F n seq M + F m < x n m seq M + G n seq M + G m < x
126 125 reximdva φ x + m N n m seq M + F n seq M + F n seq M + F m < x m N n m seq M + G n seq M + G m < x
127 39 r19.29uz n N seq M + G n m N n m seq M + G n seq M + G m < x m N n m seq M + G n seq M + G n seq M + G m < x
128 31 126 127 syl6an φ x + m N n m seq M + F n seq M + F n seq M + F m < x m N n m seq M + G n seq M + G n seq M + G m < x
129 128 ralimdva φ x + m N n m seq M + F n seq M + F n seq M + F m < x x + m N n m seq M + G n seq M + G n seq M + G m < x
130 1 39 cau4 N Z x + m Z n m seq M + F n seq M + F n seq M + F m < x x + m N n m seq M + F n seq M + F n seq M + F m < x
131 2 130 syl φ x + m Z n m seq M + F n seq M + F n seq M + F m < x x + m N n m seq M + F n seq M + F n seq M + F m < x
132 1 39 cau4 N Z x + m Z n m seq M + G n seq M + G n seq M + G m < x x + m N n m seq M + G n seq M + G n seq M + G m < x
133 2 132 syl φ x + m Z n m seq M + G n seq M + G n seq M + G m < x x + m N n m seq M + G n seq M + G n seq M + G m < x
134 129 131 133 3imtr4d φ x + m Z n m seq M + F n seq M + F n seq M + F m < x x + m Z n m seq M + G n seq M + G n seq M + G m < x
135 23 134 mpd φ x + m Z n m seq M + G n seq M + G n seq M + G m < x
136 1 uztrn2 m Z n m n Z
137 simpr seq M + G n seq M + G n seq M + G m < x seq M + G n seq M + G m < x
138 27 biantrurd φ n Z seq M + G n seq M + G m < x seq M + G n seq M + G n seq M + G m < x
139 137 138 syl5ib φ n Z seq M + G n seq M + G n seq M + G m < x seq M + G n seq M + G n seq M + G m < x
140 136 139 sylan2 φ m Z n m seq M + G n seq M + G n seq M + G m < x seq M + G n seq M + G n seq M + G m < x
141 140 anassrs φ m Z n m seq M + G n seq M + G n seq M + G m < x seq M + G n seq M + G n seq M + G m < x
142 141 ralimdva φ m Z n m seq M + G n seq M + G n seq M + G m < x n m seq M + G n seq M + G n seq M + G m < x
143 142 reximdva φ m Z n m seq M + G n seq M + G n seq M + G m < x m Z n m seq M + G n seq M + G n seq M + G m < x
144 143 ralimdv φ x + m Z n m seq M + G n seq M + G n seq M + G m < x x + m Z n m seq M + G n seq M + G n seq M + G m < x
145 135 144 mpd φ x + m Z n m seq M + G n seq M + G n seq M + G m < x
146 1 9 145 caurcvg2 φ seq M + G dom