| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abldiv.1 |
|- X = ran G |
| 2 |
|
abldiv.3 |
|- D = ( /g ` G ) |
| 3 |
|
ablogrpo |
|- ( G e. AbelOp -> G e. GrpOp ) |
| 4 |
1 2
|
grpodivdiv |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( C D B ) ) ) |
| 5 |
3 4
|
sylan |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( C D B ) ) ) |
| 6 |
|
3ancomb |
|- ( ( A e. X /\ B e. X /\ C e. X ) <-> ( A e. X /\ C e. X /\ B e. X ) ) |
| 7 |
1 2
|
grpomuldivass |
|- ( ( G e. GrpOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) D B ) = ( A G ( C D B ) ) ) |
| 8 |
3 7
|
sylan |
|- ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) D B ) = ( A G ( C D B ) ) ) |
| 9 |
1 2
|
ablomuldiv |
|- ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) D B ) = ( ( A D B ) G C ) ) |
| 10 |
8 9
|
eqtr3d |
|- ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( A G ( C D B ) ) = ( ( A D B ) G C ) ) |
| 11 |
6 10
|
sylan2b |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( C D B ) ) = ( ( A D B ) G C ) ) |
| 12 |
5 11
|
eqtrd |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( ( A D B ) G C ) ) |