| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpdivf.1 |
|- X = ran G |
| 2 |
|
grpdivf.3 |
|- D = ( /g ` G ) |
| 3 |
|
simpr1 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
| 4 |
|
simpr2 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
| 5 |
|
eqid |
|- ( inv ` G ) = ( inv ` G ) |
| 6 |
1 5
|
grpoinvcl |
|- ( ( G e. GrpOp /\ C e. X ) -> ( ( inv ` G ) ` C ) e. X ) |
| 7 |
6
|
3ad2antr3 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` C ) e. X ) |
| 8 |
3 4 7
|
3jca |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) |
| 9 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) -> ( ( A G B ) G ( ( inv ` G ) ` C ) ) = ( A G ( B G ( ( inv ` G ) ` C ) ) ) ) |
| 10 |
8 9
|
syldan |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G ( ( inv ` G ) ` C ) ) = ( A G ( B G ( ( inv ` G ) ` C ) ) ) ) |
| 11 |
|
simpl |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. GrpOp ) |
| 12 |
1
|
grpocl |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 13 |
12
|
3adant3r3 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G B ) e. X ) |
| 14 |
|
simpr3 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
| 15 |
1 5 2
|
grpodivval |
|- ( ( G e. GrpOp /\ ( A G B ) e. X /\ C e. X ) -> ( ( A G B ) D C ) = ( ( A G B ) G ( ( inv ` G ) ` C ) ) ) |
| 16 |
11 13 14 15
|
syl3anc |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( ( A G B ) G ( ( inv ` G ) ` C ) ) ) |
| 17 |
1 5 2
|
grpodivval |
|- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) |
| 18 |
17
|
3adant3r1 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) |
| 19 |
18
|
oveq2d |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( B D C ) ) = ( A G ( B G ( ( inv ` G ) ` C ) ) ) ) |
| 20 |
10 16 19
|
3eqtr4d |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( A G ( B D C ) ) ) |