Metamath Proof Explorer


Theorem afvelrnb0

Description: A member of a function's range is a value of the function, only one direction of implication of fvelrnb . (Contributed by Alexander van der Vekens, 1-Jun-2017)

Ref Expression
Assertion afvelrnb0
|- ( F Fn A -> ( B e. ran F -> E. x e. A ( F ''' x ) = B ) )

Proof

Step Hyp Ref Expression
1 fnrnafv
 |-  ( F Fn A -> ran F = { y | E. x e. A y = ( F ''' x ) } )
2 1 eleq2d
 |-  ( F Fn A -> ( B e. ran F <-> B e. { y | E. x e. A y = ( F ''' x ) } ) )
3 eqeq1
 |-  ( y = B -> ( y = ( F ''' x ) <-> B = ( F ''' x ) ) )
4 eqcom
 |-  ( B = ( F ''' x ) <-> ( F ''' x ) = B )
5 3 4 bitrdi
 |-  ( y = B -> ( y = ( F ''' x ) <-> ( F ''' x ) = B ) )
6 5 rexbidv
 |-  ( y = B -> ( E. x e. A y = ( F ''' x ) <-> E. x e. A ( F ''' x ) = B ) )
7 6 elabg
 |-  ( B e. { y | E. x e. A y = ( F ''' x ) } -> ( B e. { y | E. x e. A y = ( F ''' x ) } <-> E. x e. A ( F ''' x ) = B ) )
8 7 ibi
 |-  ( B e. { y | E. x e. A y = ( F ''' x ) } -> E. x e. A ( F ''' x ) = B )
9 2 8 syl6bi
 |-  ( F Fn A -> ( B e. ran F -> E. x e. A ( F ''' x ) = B ) )