Metamath Proof Explorer


Theorem afvelrnb0

Description: A member of a function's range is a value of the function, only one direction of implication of fvelrnb . (Contributed by Alexander van der Vekens, 1-Jun-2017)

Ref Expression
Assertion afvelrnb0 FFnABranFxAF'''x=B

Proof

Step Hyp Ref Expression
1 fnrnafv FFnAranF=y|xAy=F'''x
2 1 eleq2d FFnABranFBy|xAy=F'''x
3 eqeq1 y=By=F'''xB=F'''x
4 eqcom B=F'''xF'''x=B
5 3 4 bitrdi y=By=F'''xF'''x=B
6 5 rexbidv y=BxAy=F'''xxAF'''x=B
7 6 elabg By|xAy=F'''xBy|xAy=F'''xxAF'''x=B
8 7 ibi By|xAy=F'''xxAF'''x=B
9 2 8 syl6bi FFnABranFxAF'''x=B