| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ajfun.5 |  |-  A = ( U adj W ) | 
						
							| 2 |  | oveq1 |  |-  ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( U adj W ) = ( if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) adj W ) ) | 
						
							| 3 | 1 2 | eqtrid |  |-  ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> A = ( if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) adj W ) ) | 
						
							| 4 | 3 | funeqd |  |-  ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( Fun A <-> Fun ( if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) adj W ) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) adj W ) = ( if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) adj if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) | 
						
							| 6 | 5 | funeqd |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( Fun ( if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) adj W ) <-> Fun ( if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) adj if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) ) | 
						
							| 7 |  | eqid |  |-  ( if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) adj if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) = ( if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) adj if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) | 
						
							| 8 |  | elimphu |  |-  if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) e. CPreHilOLD | 
						
							| 9 |  | elimnvu |  |-  if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) e. NrmCVec | 
						
							| 10 | 7 8 9 | ajfuni |  |-  Fun ( if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) adj if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) | 
						
							| 11 | 4 6 10 | dedth2h |  |-  ( ( U e. CPreHilOLD /\ W e. NrmCVec ) -> Fun A ) |