Metamath Proof Explorer


Theorem ajfun

Description: The adjoint function is a function. This is not immediately apparent from df-aj but results from the uniqueness shown by ajmoi . (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis ajfun.5 A=UadjW
Assertion ajfun UCPreHilOLDWNrmCVecFunA

Proof

Step Hyp Ref Expression
1 ajfun.5 A=UadjW
2 oveq1 U=ifUCPreHilOLDU+×absUadjW=ifUCPreHilOLDU+×absadjW
3 1 2 eqtrid U=ifUCPreHilOLDU+×absA=ifUCPreHilOLDU+×absadjW
4 3 funeqd U=ifUCPreHilOLDU+×absFunAFunifUCPreHilOLDU+×absadjW
5 oveq2 W=ifWNrmCVecW+×absifUCPreHilOLDU+×absadjW=ifUCPreHilOLDU+×absadjifWNrmCVecW+×abs
6 5 funeqd W=ifWNrmCVecW+×absFunifUCPreHilOLDU+×absadjWFunifUCPreHilOLDU+×absadjifWNrmCVecW+×abs
7 eqid ifUCPreHilOLDU+×absadjifWNrmCVecW+×abs=ifUCPreHilOLDU+×absadjifWNrmCVecW+×abs
8 elimphu ifUCPreHilOLDU+×absCPreHilOLD
9 elimnvu ifWNrmCVecW+×absNrmCVec
10 7 8 9 ajfuni FunifUCPreHilOLDU+×absadjifWNrmCVecW+×abs
11 4 6 10 dedth2h UCPreHilOLDWNrmCVecFunA