| Step |
Hyp |
Ref |
Expression |
| 1 |
|
andi |
|- ( ( ph /\ ( ( ps \/ ch ) \/ th ) ) <-> ( ( ph /\ ( ps \/ ch ) ) \/ ( ph /\ th ) ) ) |
| 2 |
|
andi |
|- ( ( ph /\ ( ps \/ ch ) ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) ) |
| 3 |
2
|
orbi1i |
|- ( ( ( ph /\ ( ps \/ ch ) ) \/ ( ph /\ th ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ph /\ th ) ) ) |
| 4 |
1 3
|
bitri |
|- ( ( ph /\ ( ( ps \/ ch ) \/ th ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ph /\ th ) ) ) |
| 5 |
|
df-3or |
|- ( ( ps \/ ch \/ th ) <-> ( ( ps \/ ch ) \/ th ) ) |
| 6 |
5
|
anbi2i |
|- ( ( ph /\ ( ps \/ ch \/ th ) ) <-> ( ph /\ ( ( ps \/ ch ) \/ th ) ) ) |
| 7 |
|
df-3or |
|- ( ( ( ph /\ ps ) \/ ( ph /\ ch ) \/ ( ph /\ th ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ph /\ th ) ) ) |
| 8 |
4 6 7
|
3bitr4i |
|- ( ( ph /\ ( ps \/ ch \/ th ) ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) \/ ( ph /\ th ) ) ) |