Step |
Hyp |
Ref |
Expression |
1 |
|
andi |
|- ( ( ph /\ ( ( ps \/ ch ) \/ th ) ) <-> ( ( ph /\ ( ps \/ ch ) ) \/ ( ph /\ th ) ) ) |
2 |
|
andi |
|- ( ( ph /\ ( ps \/ ch ) ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) ) |
3 |
2
|
orbi1i |
|- ( ( ( ph /\ ( ps \/ ch ) ) \/ ( ph /\ th ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ph /\ th ) ) ) |
4 |
1 3
|
bitri |
|- ( ( ph /\ ( ( ps \/ ch ) \/ th ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ph /\ th ) ) ) |
5 |
|
df-3or |
|- ( ( ps \/ ch \/ th ) <-> ( ( ps \/ ch ) \/ th ) ) |
6 |
5
|
anbi2i |
|- ( ( ph /\ ( ps \/ ch \/ th ) ) <-> ( ph /\ ( ( ps \/ ch ) \/ th ) ) ) |
7 |
|
df-3or |
|- ( ( ( ph /\ ps ) \/ ( ph /\ ch ) \/ ( ph /\ th ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ph /\ th ) ) ) |
8 |
4 6 7
|
3bitr4i |
|- ( ( ph /\ ( ps \/ ch \/ th ) ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) \/ ( ph /\ th ) ) ) |