| Step | Hyp | Ref | Expression | 
						
							| 1 |  | andi |  |-  ( ( ph /\ ( ( ps \/ ch ) \/ th ) ) <-> ( ( ph /\ ( ps \/ ch ) ) \/ ( ph /\ th ) ) ) | 
						
							| 2 |  | andi |  |-  ( ( ph /\ ( ps \/ ch ) ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) ) | 
						
							| 3 | 2 | orbi1i |  |-  ( ( ( ph /\ ( ps \/ ch ) ) \/ ( ph /\ th ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ph /\ th ) ) ) | 
						
							| 4 | 1 3 | bitri |  |-  ( ( ph /\ ( ( ps \/ ch ) \/ th ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ph /\ th ) ) ) | 
						
							| 5 |  | df-3or |  |-  ( ( ps \/ ch \/ th ) <-> ( ( ps \/ ch ) \/ th ) ) | 
						
							| 6 | 5 | anbi2i |  |-  ( ( ph /\ ( ps \/ ch \/ th ) ) <-> ( ph /\ ( ( ps \/ ch ) \/ th ) ) ) | 
						
							| 7 |  | df-3or |  |-  ( ( ( ph /\ ps ) \/ ( ph /\ ch ) \/ ( ph /\ th ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ph /\ th ) ) ) | 
						
							| 8 | 4 6 7 | 3bitr4i |  |-  ( ( ph /\ ( ps \/ ch \/ th ) ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) \/ ( ph /\ th ) ) ) |