Step |
Hyp |
Ref |
Expression |
1 |
|
eqss |
|- ( ( A u. B ) = { C } <-> ( ( A u. B ) C_ { C } /\ { C } C_ ( A u. B ) ) ) |
2 |
1
|
a1i |
|- ( C e. _V -> ( ( A u. B ) = { C } <-> ( ( A u. B ) C_ { C } /\ { C } C_ ( A u. B ) ) ) ) |
3 |
|
unss |
|- ( ( A C_ { C } /\ B C_ { C } ) <-> ( A u. B ) C_ { C } ) |
4 |
3
|
bicomi |
|- ( ( A u. B ) C_ { C } <-> ( A C_ { C } /\ B C_ { C } ) ) |
5 |
4
|
a1i |
|- ( C e. _V -> ( ( A u. B ) C_ { C } <-> ( A C_ { C } /\ B C_ { C } ) ) ) |
6 |
|
elun |
|- ( C e. ( A u. B ) <-> ( C e. A \/ C e. B ) ) |
7 |
|
snssg |
|- ( C e. _V -> ( C e. A <-> { C } C_ A ) ) |
8 |
|
snssg |
|- ( C e. _V -> ( C e. B <-> { C } C_ B ) ) |
9 |
7 8
|
orbi12d |
|- ( C e. _V -> ( ( C e. A \/ C e. B ) <-> ( { C } C_ A \/ { C } C_ B ) ) ) |
10 |
6 9
|
bitr2id |
|- ( C e. _V -> ( ( { C } C_ A \/ { C } C_ B ) <-> C e. ( A u. B ) ) ) |
11 |
|
snssg |
|- ( C e. _V -> ( C e. ( A u. B ) <-> { C } C_ ( A u. B ) ) ) |
12 |
10 11
|
bitr2d |
|- ( C e. _V -> ( { C } C_ ( A u. B ) <-> ( { C } C_ A \/ { C } C_ B ) ) ) |
13 |
5 12
|
anbi12d |
|- ( C e. _V -> ( ( ( A u. B ) C_ { C } /\ { C } C_ ( A u. B ) ) <-> ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A \/ { C } C_ B ) ) ) ) |
14 |
|
or3or |
|- ( ( { C } C_ A \/ { C } C_ B ) <-> ( ( { C } C_ A /\ { C } C_ B ) \/ ( { C } C_ A /\ -. { C } C_ B ) \/ ( -. { C } C_ A /\ { C } C_ B ) ) ) |
15 |
14
|
anbi2i |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A \/ { C } C_ B ) ) <-> ( ( A C_ { C } /\ B C_ { C } ) /\ ( ( { C } C_ A /\ { C } C_ B ) \/ ( { C } C_ A /\ -. { C } C_ B ) \/ ( -. { C } C_ A /\ { C } C_ B ) ) ) ) |
16 |
|
andi3or |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( ( { C } C_ A /\ { C } C_ B ) \/ ( { C } C_ A /\ -. { C } C_ B ) \/ ( -. { C } C_ A /\ { C } C_ B ) ) ) <-> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ -. { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( -. { C } C_ A /\ { C } C_ B ) ) ) ) |
17 |
15 16
|
bitri |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A \/ { C } C_ B ) ) <-> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ -. { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( -. { C } C_ A /\ { C } C_ B ) ) ) ) |
18 |
|
an4 |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) <-> ( ( A C_ { C } /\ { C } C_ A ) /\ ( B C_ { C } /\ { C } C_ B ) ) ) |
19 |
|
eqss |
|- ( A = { C } <-> ( A C_ { C } /\ { C } C_ A ) ) |
20 |
|
eqss |
|- ( B = { C } <-> ( B C_ { C } /\ { C } C_ B ) ) |
21 |
19 20
|
anbi12i |
|- ( ( A = { C } /\ B = { C } ) <-> ( ( A C_ { C } /\ { C } C_ A ) /\ ( B C_ { C } /\ { C } C_ B ) ) ) |
22 |
21
|
bicomi |
|- ( ( ( A C_ { C } /\ { C } C_ A ) /\ ( B C_ { C } /\ { C } C_ B ) ) <-> ( A = { C } /\ B = { C } ) ) |
23 |
18 22
|
bitri |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) <-> ( A = { C } /\ B = { C } ) ) |
24 |
23
|
a1i |
|- ( C e. _V -> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) <-> ( A = { C } /\ B = { C } ) ) ) |
25 |
|
an4 |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ -. { C } C_ B ) ) <-> ( ( A C_ { C } /\ { C } C_ A ) /\ ( B C_ { C } /\ -. { C } C_ B ) ) ) |
26 |
19
|
bicomi |
|- ( ( A C_ { C } /\ { C } C_ A ) <-> A = { C } ) |
27 |
26
|
a1i |
|- ( C e. _V -> ( ( A C_ { C } /\ { C } C_ A ) <-> A = { C } ) ) |
28 |
|
sssn |
|- ( B C_ { C } <-> ( B = (/) \/ B = { C } ) ) |
29 |
28
|
a1i |
|- ( C e. _V -> ( B C_ { C } <-> ( B = (/) \/ B = { C } ) ) ) |
30 |
29
|
anbi1d |
|- ( C e. _V -> ( ( B C_ { C } /\ -. { C } C_ B ) <-> ( ( B = (/) \/ B = { C } ) /\ -. { C } C_ B ) ) ) |
31 |
|
andir |
|- ( ( ( B = (/) \/ B = { C } ) /\ -. { C } C_ B ) <-> ( ( B = (/) /\ -. { C } C_ B ) \/ ( B = { C } /\ -. { C } C_ B ) ) ) |
32 |
|
n0i |
|- ( C e. B -> -. B = (/) ) |
33 |
8 32
|
syl6bir |
|- ( C e. _V -> ( { C } C_ B -> -. B = (/) ) ) |
34 |
33
|
con2d |
|- ( C e. _V -> ( B = (/) -> -. { C } C_ B ) ) |
35 |
34
|
pm4.71d |
|- ( C e. _V -> ( B = (/) <-> ( B = (/) /\ -. { C } C_ B ) ) ) |
36 |
|
eqimss2 |
|- ( B = { C } -> { C } C_ B ) |
37 |
|
iman |
|- ( ( B = { C } -> { C } C_ B ) <-> -. ( B = { C } /\ -. { C } C_ B ) ) |
38 |
36 37
|
mpbi |
|- -. ( B = { C } /\ -. { C } C_ B ) |
39 |
38
|
biorfi |
|- ( ( B = (/) /\ -. { C } C_ B ) <-> ( ( B = (/) /\ -. { C } C_ B ) \/ ( B = { C } /\ -. { C } C_ B ) ) ) |
40 |
35 39
|
bitr2di |
|- ( C e. _V -> ( ( ( B = (/) /\ -. { C } C_ B ) \/ ( B = { C } /\ -. { C } C_ B ) ) <-> B = (/) ) ) |
41 |
31 40
|
syl5bb |
|- ( C e. _V -> ( ( ( B = (/) \/ B = { C } ) /\ -. { C } C_ B ) <-> B = (/) ) ) |
42 |
30 41
|
bitrd |
|- ( C e. _V -> ( ( B C_ { C } /\ -. { C } C_ B ) <-> B = (/) ) ) |
43 |
27 42
|
anbi12d |
|- ( C e. _V -> ( ( ( A C_ { C } /\ { C } C_ A ) /\ ( B C_ { C } /\ -. { C } C_ B ) ) <-> ( A = { C } /\ B = (/) ) ) ) |
44 |
25 43
|
syl5bb |
|- ( C e. _V -> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ -. { C } C_ B ) ) <-> ( A = { C } /\ B = (/) ) ) ) |
45 |
|
an4 |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( -. { C } C_ A /\ { C } C_ B ) ) <-> ( ( A C_ { C } /\ -. { C } C_ A ) /\ ( B C_ { C } /\ { C } C_ B ) ) ) |
46 |
|
sssn |
|- ( A C_ { C } <-> ( A = (/) \/ A = { C } ) ) |
47 |
46
|
a1i |
|- ( C e. _V -> ( A C_ { C } <-> ( A = (/) \/ A = { C } ) ) ) |
48 |
47
|
anbi1d |
|- ( C e. _V -> ( ( A C_ { C } /\ -. { C } C_ A ) <-> ( ( A = (/) \/ A = { C } ) /\ -. { C } C_ A ) ) ) |
49 |
|
andir |
|- ( ( ( A = (/) \/ A = { C } ) /\ -. { C } C_ A ) <-> ( ( A = (/) /\ -. { C } C_ A ) \/ ( A = { C } /\ -. { C } C_ A ) ) ) |
50 |
|
n0i |
|- ( C e. A -> -. A = (/) ) |
51 |
7 50
|
syl6bir |
|- ( C e. _V -> ( { C } C_ A -> -. A = (/) ) ) |
52 |
51
|
con2d |
|- ( C e. _V -> ( A = (/) -> -. { C } C_ A ) ) |
53 |
52
|
pm4.71d |
|- ( C e. _V -> ( A = (/) <-> ( A = (/) /\ -. { C } C_ A ) ) ) |
54 |
|
eqimss2 |
|- ( A = { C } -> { C } C_ A ) |
55 |
|
iman |
|- ( ( A = { C } -> { C } C_ A ) <-> -. ( A = { C } /\ -. { C } C_ A ) ) |
56 |
54 55
|
mpbi |
|- -. ( A = { C } /\ -. { C } C_ A ) |
57 |
56
|
biorfi |
|- ( ( A = (/) /\ -. { C } C_ A ) <-> ( ( A = (/) /\ -. { C } C_ A ) \/ ( A = { C } /\ -. { C } C_ A ) ) ) |
58 |
53 57
|
bitr2di |
|- ( C e. _V -> ( ( ( A = (/) /\ -. { C } C_ A ) \/ ( A = { C } /\ -. { C } C_ A ) ) <-> A = (/) ) ) |
59 |
49 58
|
syl5bb |
|- ( C e. _V -> ( ( ( A = (/) \/ A = { C } ) /\ -. { C } C_ A ) <-> A = (/) ) ) |
60 |
48 59
|
bitrd |
|- ( C e. _V -> ( ( A C_ { C } /\ -. { C } C_ A ) <-> A = (/) ) ) |
61 |
20
|
bicomi |
|- ( ( B C_ { C } /\ { C } C_ B ) <-> B = { C } ) |
62 |
61
|
a1i |
|- ( C e. _V -> ( ( B C_ { C } /\ { C } C_ B ) <-> B = { C } ) ) |
63 |
60 62
|
anbi12d |
|- ( C e. _V -> ( ( ( A C_ { C } /\ -. { C } C_ A ) /\ ( B C_ { C } /\ { C } C_ B ) ) <-> ( A = (/) /\ B = { C } ) ) ) |
64 |
45 63
|
syl5bb |
|- ( C e. _V -> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( -. { C } C_ A /\ { C } C_ B ) ) <-> ( A = (/) /\ B = { C } ) ) ) |
65 |
24 44 64
|
3orbi123d |
|- ( C e. _V -> ( ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ -. { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( -. { C } C_ A /\ { C } C_ B ) ) ) <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
66 |
17 65
|
syl5bb |
|- ( C e. _V -> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A \/ { C } C_ B ) ) <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
67 |
2 13 66
|
3bitrd |
|- ( C e. _V -> ( ( A u. B ) = { C } <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
68 |
|
snprc |
|- ( -. C e. _V <-> { C } = (/) ) |
69 |
68
|
biimpi |
|- ( -. C e. _V -> { C } = (/) ) |
70 |
69
|
eqeq2d |
|- ( -. C e. _V -> ( ( A u. B ) = { C } <-> ( A u. B ) = (/) ) ) |
71 |
|
pm4.25 |
|- ( ( A = (/) /\ B = (/) ) <-> ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) ) |
72 |
71
|
orbi1i |
|- ( ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) <-> ( ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) \/ ( A = (/) /\ B = (/) ) ) ) |
73 |
71 72
|
bitri |
|- ( ( A = (/) /\ B = (/) ) <-> ( ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) \/ ( A = (/) /\ B = (/) ) ) ) |
74 |
69
|
eqeq2d |
|- ( -. C e. _V -> ( A = { C } <-> A = (/) ) ) |
75 |
69
|
eqeq2d |
|- ( -. C e. _V -> ( B = { C } <-> B = (/) ) ) |
76 |
74 75
|
anbi12d |
|- ( -. C e. _V -> ( ( A = { C } /\ B = { C } ) <-> ( A = (/) /\ B = (/) ) ) ) |
77 |
74
|
anbi1d |
|- ( -. C e. _V -> ( ( A = { C } /\ B = (/) ) <-> ( A = (/) /\ B = (/) ) ) ) |
78 |
76 77
|
orbi12d |
|- ( -. C e. _V -> ( ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) ) <-> ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) ) ) |
79 |
75
|
anbi2d |
|- ( -. C e. _V -> ( ( A = (/) /\ B = { C } ) <-> ( A = (/) /\ B = (/) ) ) ) |
80 |
78 79
|
orbi12d |
|- ( -. C e. _V -> ( ( ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) ) \/ ( A = (/) /\ B = { C } ) ) <-> ( ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) \/ ( A = (/) /\ B = (/) ) ) ) ) |
81 |
73 80
|
bitr4id |
|- ( -. C e. _V -> ( ( A = (/) /\ B = (/) ) <-> ( ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
82 |
|
un00 |
|- ( ( A = (/) /\ B = (/) ) <-> ( A u. B ) = (/) ) |
83 |
82
|
bicomi |
|- ( ( A u. B ) = (/) <-> ( A = (/) /\ B = (/) ) ) |
84 |
|
df-3or |
|- ( ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) <-> ( ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) ) \/ ( A = (/) /\ B = { C } ) ) ) |
85 |
81 83 84
|
3bitr4g |
|- ( -. C e. _V -> ( ( A u. B ) = (/) <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
86 |
70 85
|
bitrd |
|- ( -. C e. _V -> ( ( A u. B ) = { C } <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
87 |
67 86
|
pm2.61i |
|- ( ( A u. B ) = { C } <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) |