| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqss |
|- ( ( A u. B ) = { C } <-> ( ( A u. B ) C_ { C } /\ { C } C_ ( A u. B ) ) ) |
| 2 |
1
|
a1i |
|- ( C e. _V -> ( ( A u. B ) = { C } <-> ( ( A u. B ) C_ { C } /\ { C } C_ ( A u. B ) ) ) ) |
| 3 |
|
unss |
|- ( ( A C_ { C } /\ B C_ { C } ) <-> ( A u. B ) C_ { C } ) |
| 4 |
3
|
bicomi |
|- ( ( A u. B ) C_ { C } <-> ( A C_ { C } /\ B C_ { C } ) ) |
| 5 |
4
|
a1i |
|- ( C e. _V -> ( ( A u. B ) C_ { C } <-> ( A C_ { C } /\ B C_ { C } ) ) ) |
| 6 |
|
elun |
|- ( C e. ( A u. B ) <-> ( C e. A \/ C e. B ) ) |
| 7 |
|
snssg |
|- ( C e. _V -> ( C e. A <-> { C } C_ A ) ) |
| 8 |
|
snssg |
|- ( C e. _V -> ( C e. B <-> { C } C_ B ) ) |
| 9 |
7 8
|
orbi12d |
|- ( C e. _V -> ( ( C e. A \/ C e. B ) <-> ( { C } C_ A \/ { C } C_ B ) ) ) |
| 10 |
6 9
|
bitr2id |
|- ( C e. _V -> ( ( { C } C_ A \/ { C } C_ B ) <-> C e. ( A u. B ) ) ) |
| 11 |
|
snssg |
|- ( C e. _V -> ( C e. ( A u. B ) <-> { C } C_ ( A u. B ) ) ) |
| 12 |
10 11
|
bitr2d |
|- ( C e. _V -> ( { C } C_ ( A u. B ) <-> ( { C } C_ A \/ { C } C_ B ) ) ) |
| 13 |
5 12
|
anbi12d |
|- ( C e. _V -> ( ( ( A u. B ) C_ { C } /\ { C } C_ ( A u. B ) ) <-> ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A \/ { C } C_ B ) ) ) ) |
| 14 |
|
or3or |
|- ( ( { C } C_ A \/ { C } C_ B ) <-> ( ( { C } C_ A /\ { C } C_ B ) \/ ( { C } C_ A /\ -. { C } C_ B ) \/ ( -. { C } C_ A /\ { C } C_ B ) ) ) |
| 15 |
14
|
anbi2i |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A \/ { C } C_ B ) ) <-> ( ( A C_ { C } /\ B C_ { C } ) /\ ( ( { C } C_ A /\ { C } C_ B ) \/ ( { C } C_ A /\ -. { C } C_ B ) \/ ( -. { C } C_ A /\ { C } C_ B ) ) ) ) |
| 16 |
|
andi3or |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( ( { C } C_ A /\ { C } C_ B ) \/ ( { C } C_ A /\ -. { C } C_ B ) \/ ( -. { C } C_ A /\ { C } C_ B ) ) ) <-> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ -. { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( -. { C } C_ A /\ { C } C_ B ) ) ) ) |
| 17 |
15 16
|
bitri |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A \/ { C } C_ B ) ) <-> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ -. { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( -. { C } C_ A /\ { C } C_ B ) ) ) ) |
| 18 |
|
an4 |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) <-> ( ( A C_ { C } /\ { C } C_ A ) /\ ( B C_ { C } /\ { C } C_ B ) ) ) |
| 19 |
|
eqss |
|- ( A = { C } <-> ( A C_ { C } /\ { C } C_ A ) ) |
| 20 |
|
eqss |
|- ( B = { C } <-> ( B C_ { C } /\ { C } C_ B ) ) |
| 21 |
19 20
|
anbi12i |
|- ( ( A = { C } /\ B = { C } ) <-> ( ( A C_ { C } /\ { C } C_ A ) /\ ( B C_ { C } /\ { C } C_ B ) ) ) |
| 22 |
21
|
bicomi |
|- ( ( ( A C_ { C } /\ { C } C_ A ) /\ ( B C_ { C } /\ { C } C_ B ) ) <-> ( A = { C } /\ B = { C } ) ) |
| 23 |
18 22
|
bitri |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) <-> ( A = { C } /\ B = { C } ) ) |
| 24 |
23
|
a1i |
|- ( C e. _V -> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) <-> ( A = { C } /\ B = { C } ) ) ) |
| 25 |
|
an4 |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ -. { C } C_ B ) ) <-> ( ( A C_ { C } /\ { C } C_ A ) /\ ( B C_ { C } /\ -. { C } C_ B ) ) ) |
| 26 |
19
|
bicomi |
|- ( ( A C_ { C } /\ { C } C_ A ) <-> A = { C } ) |
| 27 |
26
|
a1i |
|- ( C e. _V -> ( ( A C_ { C } /\ { C } C_ A ) <-> A = { C } ) ) |
| 28 |
|
sssn |
|- ( B C_ { C } <-> ( B = (/) \/ B = { C } ) ) |
| 29 |
28
|
a1i |
|- ( C e. _V -> ( B C_ { C } <-> ( B = (/) \/ B = { C } ) ) ) |
| 30 |
29
|
anbi1d |
|- ( C e. _V -> ( ( B C_ { C } /\ -. { C } C_ B ) <-> ( ( B = (/) \/ B = { C } ) /\ -. { C } C_ B ) ) ) |
| 31 |
|
andir |
|- ( ( ( B = (/) \/ B = { C } ) /\ -. { C } C_ B ) <-> ( ( B = (/) /\ -. { C } C_ B ) \/ ( B = { C } /\ -. { C } C_ B ) ) ) |
| 32 |
|
n0i |
|- ( C e. B -> -. B = (/) ) |
| 33 |
8 32
|
biimtrrdi |
|- ( C e. _V -> ( { C } C_ B -> -. B = (/) ) ) |
| 34 |
33
|
con2d |
|- ( C e. _V -> ( B = (/) -> -. { C } C_ B ) ) |
| 35 |
34
|
pm4.71d |
|- ( C e. _V -> ( B = (/) <-> ( B = (/) /\ -. { C } C_ B ) ) ) |
| 36 |
|
eqimss2 |
|- ( B = { C } -> { C } C_ B ) |
| 37 |
|
iman |
|- ( ( B = { C } -> { C } C_ B ) <-> -. ( B = { C } /\ -. { C } C_ B ) ) |
| 38 |
36 37
|
mpbi |
|- -. ( B = { C } /\ -. { C } C_ B ) |
| 39 |
38
|
biorfri |
|- ( ( B = (/) /\ -. { C } C_ B ) <-> ( ( B = (/) /\ -. { C } C_ B ) \/ ( B = { C } /\ -. { C } C_ B ) ) ) |
| 40 |
35 39
|
bitr2di |
|- ( C e. _V -> ( ( ( B = (/) /\ -. { C } C_ B ) \/ ( B = { C } /\ -. { C } C_ B ) ) <-> B = (/) ) ) |
| 41 |
31 40
|
bitrid |
|- ( C e. _V -> ( ( ( B = (/) \/ B = { C } ) /\ -. { C } C_ B ) <-> B = (/) ) ) |
| 42 |
30 41
|
bitrd |
|- ( C e. _V -> ( ( B C_ { C } /\ -. { C } C_ B ) <-> B = (/) ) ) |
| 43 |
27 42
|
anbi12d |
|- ( C e. _V -> ( ( ( A C_ { C } /\ { C } C_ A ) /\ ( B C_ { C } /\ -. { C } C_ B ) ) <-> ( A = { C } /\ B = (/) ) ) ) |
| 44 |
25 43
|
bitrid |
|- ( C e. _V -> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ -. { C } C_ B ) ) <-> ( A = { C } /\ B = (/) ) ) ) |
| 45 |
|
an4 |
|- ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( -. { C } C_ A /\ { C } C_ B ) ) <-> ( ( A C_ { C } /\ -. { C } C_ A ) /\ ( B C_ { C } /\ { C } C_ B ) ) ) |
| 46 |
|
sssn |
|- ( A C_ { C } <-> ( A = (/) \/ A = { C } ) ) |
| 47 |
46
|
a1i |
|- ( C e. _V -> ( A C_ { C } <-> ( A = (/) \/ A = { C } ) ) ) |
| 48 |
47
|
anbi1d |
|- ( C e. _V -> ( ( A C_ { C } /\ -. { C } C_ A ) <-> ( ( A = (/) \/ A = { C } ) /\ -. { C } C_ A ) ) ) |
| 49 |
|
andir |
|- ( ( ( A = (/) \/ A = { C } ) /\ -. { C } C_ A ) <-> ( ( A = (/) /\ -. { C } C_ A ) \/ ( A = { C } /\ -. { C } C_ A ) ) ) |
| 50 |
|
n0i |
|- ( C e. A -> -. A = (/) ) |
| 51 |
7 50
|
biimtrrdi |
|- ( C e. _V -> ( { C } C_ A -> -. A = (/) ) ) |
| 52 |
51
|
con2d |
|- ( C e. _V -> ( A = (/) -> -. { C } C_ A ) ) |
| 53 |
52
|
pm4.71d |
|- ( C e. _V -> ( A = (/) <-> ( A = (/) /\ -. { C } C_ A ) ) ) |
| 54 |
|
eqimss2 |
|- ( A = { C } -> { C } C_ A ) |
| 55 |
|
iman |
|- ( ( A = { C } -> { C } C_ A ) <-> -. ( A = { C } /\ -. { C } C_ A ) ) |
| 56 |
54 55
|
mpbi |
|- -. ( A = { C } /\ -. { C } C_ A ) |
| 57 |
56
|
biorfri |
|- ( ( A = (/) /\ -. { C } C_ A ) <-> ( ( A = (/) /\ -. { C } C_ A ) \/ ( A = { C } /\ -. { C } C_ A ) ) ) |
| 58 |
53 57
|
bitr2di |
|- ( C e. _V -> ( ( ( A = (/) /\ -. { C } C_ A ) \/ ( A = { C } /\ -. { C } C_ A ) ) <-> A = (/) ) ) |
| 59 |
49 58
|
bitrid |
|- ( C e. _V -> ( ( ( A = (/) \/ A = { C } ) /\ -. { C } C_ A ) <-> A = (/) ) ) |
| 60 |
48 59
|
bitrd |
|- ( C e. _V -> ( ( A C_ { C } /\ -. { C } C_ A ) <-> A = (/) ) ) |
| 61 |
20
|
bicomi |
|- ( ( B C_ { C } /\ { C } C_ B ) <-> B = { C } ) |
| 62 |
61
|
a1i |
|- ( C e. _V -> ( ( B C_ { C } /\ { C } C_ B ) <-> B = { C } ) ) |
| 63 |
60 62
|
anbi12d |
|- ( C e. _V -> ( ( ( A C_ { C } /\ -. { C } C_ A ) /\ ( B C_ { C } /\ { C } C_ B ) ) <-> ( A = (/) /\ B = { C } ) ) ) |
| 64 |
45 63
|
bitrid |
|- ( C e. _V -> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( -. { C } C_ A /\ { C } C_ B ) ) <-> ( A = (/) /\ B = { C } ) ) ) |
| 65 |
24 44 64
|
3orbi123d |
|- ( C e. _V -> ( ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A /\ -. { C } C_ B ) ) \/ ( ( A C_ { C } /\ B C_ { C } ) /\ ( -. { C } C_ A /\ { C } C_ B ) ) ) <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
| 66 |
17 65
|
bitrid |
|- ( C e. _V -> ( ( ( A C_ { C } /\ B C_ { C } ) /\ ( { C } C_ A \/ { C } C_ B ) ) <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
| 67 |
2 13 66
|
3bitrd |
|- ( C e. _V -> ( ( A u. B ) = { C } <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
| 68 |
|
snprc |
|- ( -. C e. _V <-> { C } = (/) ) |
| 69 |
68
|
biimpi |
|- ( -. C e. _V -> { C } = (/) ) |
| 70 |
69
|
eqeq2d |
|- ( -. C e. _V -> ( ( A u. B ) = { C } <-> ( A u. B ) = (/) ) ) |
| 71 |
|
pm4.25 |
|- ( ( A = (/) /\ B = (/) ) <-> ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) ) |
| 72 |
71
|
orbi1i |
|- ( ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) <-> ( ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) \/ ( A = (/) /\ B = (/) ) ) ) |
| 73 |
71 72
|
bitri |
|- ( ( A = (/) /\ B = (/) ) <-> ( ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) \/ ( A = (/) /\ B = (/) ) ) ) |
| 74 |
69
|
eqeq2d |
|- ( -. C e. _V -> ( A = { C } <-> A = (/) ) ) |
| 75 |
69
|
eqeq2d |
|- ( -. C e. _V -> ( B = { C } <-> B = (/) ) ) |
| 76 |
74 75
|
anbi12d |
|- ( -. C e. _V -> ( ( A = { C } /\ B = { C } ) <-> ( A = (/) /\ B = (/) ) ) ) |
| 77 |
74
|
anbi1d |
|- ( -. C e. _V -> ( ( A = { C } /\ B = (/) ) <-> ( A = (/) /\ B = (/) ) ) ) |
| 78 |
76 77
|
orbi12d |
|- ( -. C e. _V -> ( ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) ) <-> ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) ) ) |
| 79 |
75
|
anbi2d |
|- ( -. C e. _V -> ( ( A = (/) /\ B = { C } ) <-> ( A = (/) /\ B = (/) ) ) ) |
| 80 |
78 79
|
orbi12d |
|- ( -. C e. _V -> ( ( ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) ) \/ ( A = (/) /\ B = { C } ) ) <-> ( ( ( A = (/) /\ B = (/) ) \/ ( A = (/) /\ B = (/) ) ) \/ ( A = (/) /\ B = (/) ) ) ) ) |
| 81 |
73 80
|
bitr4id |
|- ( -. C e. _V -> ( ( A = (/) /\ B = (/) ) <-> ( ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
| 82 |
|
un00 |
|- ( ( A = (/) /\ B = (/) ) <-> ( A u. B ) = (/) ) |
| 83 |
82
|
bicomi |
|- ( ( A u. B ) = (/) <-> ( A = (/) /\ B = (/) ) ) |
| 84 |
|
df-3or |
|- ( ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) <-> ( ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) ) \/ ( A = (/) /\ B = { C } ) ) ) |
| 85 |
81 83 84
|
3bitr4g |
|- ( -. C e. _V -> ( ( A u. B ) = (/) <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
| 86 |
70 85
|
bitrd |
|- ( -. C e. _V -> ( ( A u. B ) = { C } <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) ) |
| 87 |
67 86
|
pm2.61i |
|- ( ( A u. B ) = { C } <-> ( ( A = { C } /\ B = { C } ) \/ ( A = { C } /\ B = (/) ) \/ ( A = (/) /\ B = { C } ) ) ) |