Metamath Proof Explorer


Theorem or3or

Description: Decompose disjunction into three cases. (Contributed by RP, 5-Jul-2021)

Ref Expression
Assertion or3or
|- ( ( ph \/ ps ) <-> ( ( ph /\ ps ) \/ ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 excxor
 |-  ( ( ph \/_ ps ) <-> ( ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) )
2 1 orbi2i
 |-  ( ( ( ph /\ ps ) \/ ( ph \/_ ps ) ) <-> ( ( ph /\ ps ) \/ ( ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) ) )
3 orc
 |-  ( ph -> ( ph \/ ps ) )
4 exmid
 |-  ( ps \/ -. ps )
5 pm3.2
 |-  ( ph -> ( ps -> ( ph /\ ps ) ) )
6 biimp
 |-  ( ( ph <-> ps ) -> ( ph -> ps ) )
7 iman
 |-  ( ( ph -> ps ) <-> -. ( ph /\ -. ps ) )
8 6 7 sylib
 |-  ( ( ph <-> ps ) -> -. ( ph /\ -. ps ) )
9 8 con2i
 |-  ( ( ph /\ -. ps ) -> -. ( ph <-> ps ) )
10 9 ex
 |-  ( ph -> ( -. ps -> -. ( ph <-> ps ) ) )
11 df-xor
 |-  ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) )
12 11 bicomi
 |-  ( -. ( ph <-> ps ) <-> ( ph \/_ ps ) )
13 10 12 syl6ib
 |-  ( ph -> ( -. ps -> ( ph \/_ ps ) ) )
14 5 13 orim12d
 |-  ( ph -> ( ( ps \/ -. ps ) -> ( ( ph /\ ps ) \/ ( ph \/_ ps ) ) ) )
15 4 14 mpi
 |-  ( ph -> ( ( ph /\ ps ) \/ ( ph \/_ ps ) ) )
16 3 15 2thd
 |-  ( ph -> ( ( ph \/ ps ) <-> ( ( ph /\ ps ) \/ ( ph \/_ ps ) ) ) )
17 bicom
 |-  ( ( ph <-> ps ) <-> ( ps <-> ph ) )
18 bibif
 |-  ( -. ph -> ( ( ps <-> ph ) <-> -. ps ) )
19 17 18 syl5bb
 |-  ( -. ph -> ( ( ph <-> ps ) <-> -. ps ) )
20 19 con2bid
 |-  ( -. ph -> ( ps <-> -. ( ph <-> ps ) ) )
21 20 12 bitrdi
 |-  ( -. ph -> ( ps <-> ( ph \/_ ps ) ) )
22 biorf
 |-  ( -. ph -> ( ps <-> ( ph \/ ps ) ) )
23 simpl
 |-  ( ( ph /\ ps ) -> ph )
24 biorf
 |-  ( -. ( ph /\ ps ) -> ( ( ph \/_ ps ) <-> ( ( ph /\ ps ) \/ ( ph \/_ ps ) ) ) )
25 23 24 nsyl5
 |-  ( -. ph -> ( ( ph \/_ ps ) <-> ( ( ph /\ ps ) \/ ( ph \/_ ps ) ) ) )
26 21 22 25 3bitr3d
 |-  ( -. ph -> ( ( ph \/ ps ) <-> ( ( ph /\ ps ) \/ ( ph \/_ ps ) ) ) )
27 16 26 pm2.61i
 |-  ( ( ph \/ ps ) <-> ( ( ph /\ ps ) \/ ( ph \/_ ps ) ) )
28 3orass
 |-  ( ( ( ph /\ ps ) \/ ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) <-> ( ( ph /\ ps ) \/ ( ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) ) )
29 2 27 28 3bitr4i
 |-  ( ( ph \/ ps ) <-> ( ( ph /\ ps ) \/ ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) )