| Step | Hyp | Ref | Expression | 
						
							| 1 |  | excxor | ⊢ ( ( 𝜑  ⊻  𝜓 )  ↔  ( ( 𝜑  ∧  ¬  𝜓 )  ∨  ( ¬  𝜑  ∧  𝜓 ) ) ) | 
						
							| 2 | 1 | orbi2i | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ⊻  𝜓 ) )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( ( 𝜑  ∧  ¬  𝜓 )  ∨  ( ¬  𝜑  ∧  𝜓 ) ) ) ) | 
						
							| 3 |  | orc | ⊢ ( 𝜑  →  ( 𝜑  ∨  𝜓 ) ) | 
						
							| 4 |  | exmid | ⊢ ( 𝜓  ∨  ¬  𝜓 ) | 
						
							| 5 |  | pm3.2 | ⊢ ( 𝜑  →  ( 𝜓  →  ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 6 |  | biimp | ⊢ ( ( 𝜑  ↔  𝜓 )  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 7 |  | iman | ⊢ ( ( 𝜑  →  𝜓 )  ↔  ¬  ( 𝜑  ∧  ¬  𝜓 ) ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ( 𝜑  ↔  𝜓 )  →  ¬  ( 𝜑  ∧  ¬  𝜓 ) ) | 
						
							| 9 | 8 | con2i | ⊢ ( ( 𝜑  ∧  ¬  𝜓 )  →  ¬  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝜑  →  ( ¬  𝜓  →  ¬  ( 𝜑  ↔  𝜓 ) ) ) | 
						
							| 11 |  | df-xor | ⊢ ( ( 𝜑  ⊻  𝜓 )  ↔  ¬  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 12 | 11 | bicomi | ⊢ ( ¬  ( 𝜑  ↔  𝜓 )  ↔  ( 𝜑  ⊻  𝜓 ) ) | 
						
							| 13 | 10 12 | imbitrdi | ⊢ ( 𝜑  →  ( ¬  𝜓  →  ( 𝜑  ⊻  𝜓 ) ) ) | 
						
							| 14 | 5 13 | orim12d | ⊢ ( 𝜑  →  ( ( 𝜓  ∨  ¬  𝜓 )  →  ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ⊻  𝜓 ) ) ) ) | 
						
							| 15 | 4 14 | mpi | ⊢ ( 𝜑  →  ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ⊻  𝜓 ) ) ) | 
						
							| 16 | 3 15 | 2thd | ⊢ ( 𝜑  →  ( ( 𝜑  ∨  𝜓 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ⊻  𝜓 ) ) ) ) | 
						
							| 17 |  | bicom | ⊢ ( ( 𝜑  ↔  𝜓 )  ↔  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 18 |  | bibif | ⊢ ( ¬  𝜑  →  ( ( 𝜓  ↔  𝜑 )  ↔  ¬  𝜓 ) ) | 
						
							| 19 | 17 18 | bitrid | ⊢ ( ¬  𝜑  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  𝜓 ) ) | 
						
							| 20 | 19 | con2bid | ⊢ ( ¬  𝜑  →  ( 𝜓  ↔  ¬  ( 𝜑  ↔  𝜓 ) ) ) | 
						
							| 21 | 20 12 | bitrdi | ⊢ ( ¬  𝜑  →  ( 𝜓  ↔  ( 𝜑  ⊻  𝜓 ) ) ) | 
						
							| 22 |  | biorf | ⊢ ( ¬  𝜑  →  ( 𝜓  ↔  ( 𝜑  ∨  𝜓 ) ) ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜑 ) | 
						
							| 24 |  | biorf | ⊢ ( ¬  ( 𝜑  ∧  𝜓 )  →  ( ( 𝜑  ⊻  𝜓 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ⊻  𝜓 ) ) ) ) | 
						
							| 25 | 23 24 | nsyl5 | ⊢ ( ¬  𝜑  →  ( ( 𝜑  ⊻  𝜓 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ⊻  𝜓 ) ) ) ) | 
						
							| 26 | 21 22 25 | 3bitr3d | ⊢ ( ¬  𝜑  →  ( ( 𝜑  ∨  𝜓 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ⊻  𝜓 ) ) ) ) | 
						
							| 27 | 16 26 | pm2.61i | ⊢ ( ( 𝜑  ∨  𝜓 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ⊻  𝜓 ) ) ) | 
						
							| 28 |  | 3orass | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ∧  ¬  𝜓 )  ∨  ( ¬  𝜑  ∧  𝜓 ) )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( ( 𝜑  ∧  ¬  𝜓 )  ∨  ( ¬  𝜑  ∧  𝜓 ) ) ) ) | 
						
							| 29 | 2 27 28 | 3bitr4i | ⊢ ( ( 𝜑  ∨  𝜓 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ∧  ¬  𝜓 )  ∨  ( ¬  𝜑  ∧  𝜓 ) ) ) |