Metamath Proof Explorer


Theorem uneqsn

Description: If a union of classes is equal to a singleton then at least one class is equal to the singleton while the other may be equal to the empty set. (Contributed by RP, 5-Jul-2021)

Ref Expression
Assertion uneqsn A B = C A = C B = C A = C B = A = B = C

Proof

Step Hyp Ref Expression
1 eqss A B = C A B C C A B
2 1 a1i C V A B = C A B C C A B
3 unss A C B C A B C
4 3 bicomi A B C A C B C
5 4 a1i C V A B C A C B C
6 elun C A B C A C B
7 snssg C V C A C A
8 snssg C V C B C B
9 7 8 orbi12d C V C A C B C A C B
10 6 9 syl5rbb C V C A C B C A B
11 snssg C V C A B C A B
12 10 11 bitr2d C V C A B C A C B
13 5 12 anbi12d C V A B C C A B A C B C C A C B
14 or3or C A C B C A C B C A ¬ C B ¬ C A C B
15 14 anbi2i A C B C C A C B A C B C C A C B C A ¬ C B ¬ C A C B
16 andi3or A C B C C A C B C A ¬ C B ¬ C A C B A C B C C A C B A C B C C A ¬ C B A C B C ¬ C A C B
17 15 16 bitri A C B C C A C B A C B C C A C B A C B C C A ¬ C B A C B C ¬ C A C B
18 an4 A C B C C A C B A C C A B C C B
19 eqss A = C A C C A
20 eqss B = C B C C B
21 19 20 anbi12i A = C B = C A C C A B C C B
22 21 bicomi A C C A B C C B A = C B = C
23 18 22 bitri A C B C C A C B A = C B = C
24 23 a1i C V A C B C C A C B A = C B = C
25 an4 A C B C C A ¬ C B A C C A B C ¬ C B
26 19 bicomi A C C A A = C
27 26 a1i C V A C C A A = C
28 sssn B C B = B = C
29 28 a1i C V B C B = B = C
30 29 anbi1d C V B C ¬ C B B = B = C ¬ C B
31 andir B = B = C ¬ C B B = ¬ C B B = C ¬ C B
32 n0i C B ¬ B =
33 8 32 syl6bir C V C B ¬ B =
34 33 con2d C V B = ¬ C B
35 34 pm4.71d C V B = B = ¬ C B
36 eqimss2 B = C C B
37 iman B = C C B ¬ B = C ¬ C B
38 36 37 mpbi ¬ B = C ¬ C B
39 38 biorfi B = ¬ C B B = ¬ C B B = C ¬ C B
40 35 39 bitr2di C V B = ¬ C B B = C ¬ C B B =
41 31 40 syl5bb C V B = B = C ¬ C B B =
42 30 41 bitrd C V B C ¬ C B B =
43 27 42 anbi12d C V A C C A B C ¬ C B A = C B =
44 25 43 syl5bb C V A C B C C A ¬ C B A = C B =
45 an4 A C B C ¬ C A C B A C ¬ C A B C C B
46 sssn A C A = A = C
47 46 a1i C V A C A = A = C
48 47 anbi1d C V A C ¬ C A A = A = C ¬ C A
49 andir A = A = C ¬ C A A = ¬ C A A = C ¬ C A
50 n0i C A ¬ A =
51 7 50 syl6bir C V C A ¬ A =
52 51 con2d C V A = ¬ C A
53 52 pm4.71d C V A = A = ¬ C A
54 eqimss2 A = C C A
55 iman A = C C A ¬ A = C ¬ C A
56 54 55 mpbi ¬ A = C ¬ C A
57 56 biorfi A = ¬ C A A = ¬ C A A = C ¬ C A
58 53 57 bitr2di C V A = ¬ C A A = C ¬ C A A =
59 49 58 syl5bb C V A = A = C ¬ C A A =
60 48 59 bitrd C V A C ¬ C A A =
61 20 bicomi B C C B B = C
62 61 a1i C V B C C B B = C
63 60 62 anbi12d C V A C ¬ C A B C C B A = B = C
64 45 63 syl5bb C V A C B C ¬ C A C B A = B = C
65 24 44 64 3orbi123d C V A C B C C A C B A C B C C A ¬ C B A C B C ¬ C A C B A = C B = C A = C B = A = B = C
66 17 65 syl5bb C V A C B C C A C B A = C B = C A = C B = A = B = C
67 2 13 66 3bitrd C V A B = C A = C B = C A = C B = A = B = C
68 snprc ¬ C V C =
69 68 biimpi ¬ C V C =
70 69 eqeq2d ¬ C V A B = C A B =
71 pm4.25 A = B = A = B = A = B =
72 71 orbi1i A = B = A = B = A = B = A = B = A = B =
73 71 72 bitri A = B = A = B = A = B = A = B =
74 69 eqeq2d ¬ C V A = C A =
75 69 eqeq2d ¬ C V B = C B =
76 74 75 anbi12d ¬ C V A = C B = C A = B =
77 74 anbi1d ¬ C V A = C B = A = B =
78 76 77 orbi12d ¬ C V A = C B = C A = C B = A = B = A = B =
79 75 anbi2d ¬ C V A = B = C A = B =
80 78 79 orbi12d ¬ C V A = C B = C A = C B = A = B = C A = B = A = B = A = B =
81 73 80 bitr4id ¬ C V A = B = A = C B = C A = C B = A = B = C
82 un00 A = B = A B =
83 82 bicomi A B = A = B =
84 df-3or A = C B = C A = C B = A = B = C A = C B = C A = C B = A = B = C
85 81 83 84 3bitr4g ¬ C V A B = A = C B = C A = C B = A = B = C
86 70 85 bitrd ¬ C V A B = C A = C B = C A = C B = A = B = C
87 67 86 pm2.61i A B = C A = C B = C A = C B = A = B = C