| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqss | ⊢ ( ( 𝐴  ∪  𝐵 )  =  { 𝐶 }  ↔  ( ( 𝐴  ∪  𝐵 )  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( 𝐶  ∈  V  →  ( ( 𝐴  ∪  𝐵 )  =  { 𝐶 }  ↔  ( ( 𝐴  ∪  𝐵 )  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  ( 𝐴  ∪  𝐵 ) ) ) ) | 
						
							| 3 |  | unss | ⊢ ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ↔  ( 𝐴  ∪  𝐵 )  ⊆  { 𝐶 } ) | 
						
							| 4 | 3 | bicomi | ⊢ ( ( 𝐴  ∪  𝐵 )  ⊆  { 𝐶 }  ↔  ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐶  ∈  V  →  ( ( 𝐴  ∪  𝐵 )  ⊆  { 𝐶 }  ↔  ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } ) ) ) | 
						
							| 6 |  | elun | ⊢ ( 𝐶  ∈  ( 𝐴  ∪  𝐵 )  ↔  ( 𝐶  ∈  𝐴  ∨  𝐶  ∈  𝐵 ) ) | 
						
							| 7 |  | snssg | ⊢ ( 𝐶  ∈  V  →  ( 𝐶  ∈  𝐴  ↔  { 𝐶 }  ⊆  𝐴 ) ) | 
						
							| 8 |  | snssg | ⊢ ( 𝐶  ∈  V  →  ( 𝐶  ∈  𝐵  ↔  { 𝐶 }  ⊆  𝐵 ) ) | 
						
							| 9 | 7 8 | orbi12d | ⊢ ( 𝐶  ∈  V  →  ( ( 𝐶  ∈  𝐴  ∨  𝐶  ∈  𝐵 )  ↔  ( { 𝐶 }  ⊆  𝐴  ∨  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 10 | 6 9 | bitr2id | ⊢ ( 𝐶  ∈  V  →  ( ( { 𝐶 }  ⊆  𝐴  ∨  { 𝐶 }  ⊆  𝐵 )  ↔  𝐶  ∈  ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 11 |  | snssg | ⊢ ( 𝐶  ∈  V  →  ( 𝐶  ∈  ( 𝐴  ∪  𝐵 )  ↔  { 𝐶 }  ⊆  ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 12 | 10 11 | bitr2d | ⊢ ( 𝐶  ∈  V  →  ( { 𝐶 }  ⊆  ( 𝐴  ∪  𝐵 )  ↔  ( { 𝐶 }  ⊆  𝐴  ∨  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 13 | 5 12 | anbi12d | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐴  ∪  𝐵 )  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  ( 𝐴  ∪  𝐵 ) )  ↔  ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∨  { 𝐶 }  ⊆  𝐵 ) ) ) ) | 
						
							| 14 |  | or3or | ⊢ ( ( { 𝐶 }  ⊆  𝐴  ∨  { 𝐶 }  ⊆  𝐵 )  ↔  ( ( { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 )  ∨  ( { 𝐶 }  ⊆  𝐴  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ∨  ( ¬  { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∨  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( ( { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 )  ∨  ( { 𝐶 }  ⊆  𝐴  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ∨  ( ¬  { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) ) ) ) | 
						
							| 16 |  | andi3or | ⊢ ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( ( { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 )  ∨  ( { 𝐶 }  ⊆  𝐴  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ∨  ( ¬  { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) ) )  ↔  ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) )  ∨  ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) )  ∨  ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( ¬  { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) ) ) ) | 
						
							| 17 | 15 16 | bitri | ⊢ ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∨  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) )  ∨  ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) )  ∨  ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( ¬  { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) ) ) ) | 
						
							| 18 |  | an4 | ⊢ ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( ( 𝐴  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐴 )  ∧  ( 𝐵  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 19 |  | eqss | ⊢ ( 𝐴  =  { 𝐶 }  ↔  ( 𝐴  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐴 ) ) | 
						
							| 20 |  | eqss | ⊢ ( 𝐵  =  { 𝐶 }  ↔  ( 𝐵  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐵 ) ) | 
						
							| 21 | 19 20 | anbi12i | ⊢ ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ↔  ( ( 𝐴  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐴 )  ∧  ( 𝐵  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 22 | 21 | bicomi | ⊢ ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐴 )  ∧  ( 𝐵  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } ) ) | 
						
							| 23 | 18 22 | bitri | ⊢ ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } ) ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } ) ) ) | 
						
							| 25 |  | an4 | ⊢ ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( ( 𝐴  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐴 )  ∧  ( 𝐵  ⊆  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 26 | 19 | bicomi | ⊢ ( ( 𝐴  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐴 )  ↔  𝐴  =  { 𝐶 } ) | 
						
							| 27 | 26 | a1i | ⊢ ( 𝐶  ∈  V  →  ( ( 𝐴  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐴 )  ↔  𝐴  =  { 𝐶 } ) ) | 
						
							| 28 |  | sssn | ⊢ ( 𝐵  ⊆  { 𝐶 }  ↔  ( 𝐵  =  ∅  ∨  𝐵  =  { 𝐶 } ) ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝐶  ∈  V  →  ( 𝐵  ⊆  { 𝐶 }  ↔  ( 𝐵  =  ∅  ∨  𝐵  =  { 𝐶 } ) ) ) | 
						
							| 30 | 29 | anbi1d | ⊢ ( 𝐶  ∈  V  →  ( ( 𝐵  ⊆  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ↔  ( ( 𝐵  =  ∅  ∨  𝐵  =  { 𝐶 } )  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 31 |  | andir | ⊢ ( ( ( 𝐵  =  ∅  ∨  𝐵  =  { 𝐶 } )  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ↔  ( ( 𝐵  =  ∅  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ∨  ( 𝐵  =  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 32 |  | n0i | ⊢ ( 𝐶  ∈  𝐵  →  ¬  𝐵  =  ∅ ) | 
						
							| 33 | 8 32 | biimtrrdi | ⊢ ( 𝐶  ∈  V  →  ( { 𝐶 }  ⊆  𝐵  →  ¬  𝐵  =  ∅ ) ) | 
						
							| 34 | 33 | con2d | ⊢ ( 𝐶  ∈  V  →  ( 𝐵  =  ∅  →  ¬  { 𝐶 }  ⊆  𝐵 ) ) | 
						
							| 35 | 34 | pm4.71d | ⊢ ( 𝐶  ∈  V  →  ( 𝐵  =  ∅  ↔  ( 𝐵  =  ∅  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 36 |  | eqimss2 | ⊢ ( 𝐵  =  { 𝐶 }  →  { 𝐶 }  ⊆  𝐵 ) | 
						
							| 37 |  | iman | ⊢ ( ( 𝐵  =  { 𝐶 }  →  { 𝐶 }  ⊆  𝐵 )  ↔  ¬  ( 𝐵  =  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) ) | 
						
							| 38 | 36 37 | mpbi | ⊢ ¬  ( 𝐵  =  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) | 
						
							| 39 | 38 | biorfri | ⊢ ( ( 𝐵  =  ∅  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ↔  ( ( 𝐵  =  ∅  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ∨  ( 𝐵  =  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 40 | 35 39 | bitr2di | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐵  =  ∅  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ∨  ( 𝐵  =  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) )  ↔  𝐵  =  ∅ ) ) | 
						
							| 41 | 31 40 | bitrid | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐵  =  ∅  ∨  𝐵  =  { 𝐶 } )  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ↔  𝐵  =  ∅ ) ) | 
						
							| 42 | 30 41 | bitrd | ⊢ ( 𝐶  ∈  V  →  ( ( 𝐵  ⊆  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐵 )  ↔  𝐵  =  ∅ ) ) | 
						
							| 43 | 27 42 | anbi12d | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐴 )  ∧  ( 𝐵  ⊆  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 44 | 25 43 | bitrid | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 45 |  | an4 | ⊢ ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( ¬  { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( ( 𝐴  ⊆  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐴 )  ∧  ( 𝐵  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐵 ) ) ) | 
						
							| 46 |  | sssn | ⊢ ( 𝐴  ⊆  { 𝐶 }  ↔  ( 𝐴  =  ∅  ∨  𝐴  =  { 𝐶 } ) ) | 
						
							| 47 | 46 | a1i | ⊢ ( 𝐶  ∈  V  →  ( 𝐴  ⊆  { 𝐶 }  ↔  ( 𝐴  =  ∅  ∨  𝐴  =  { 𝐶 } ) ) ) | 
						
							| 48 | 47 | anbi1d | ⊢ ( 𝐶  ∈  V  →  ( ( 𝐴  ⊆  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐴 )  ↔  ( ( 𝐴  =  ∅  ∨  𝐴  =  { 𝐶 } )  ∧  ¬  { 𝐶 }  ⊆  𝐴 ) ) ) | 
						
							| 49 |  | andir | ⊢ ( ( ( 𝐴  =  ∅  ∨  𝐴  =  { 𝐶 } )  ∧  ¬  { 𝐶 }  ⊆  𝐴 )  ↔  ( ( 𝐴  =  ∅  ∧  ¬  { 𝐶 }  ⊆  𝐴 )  ∨  ( 𝐴  =  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐴 ) ) ) | 
						
							| 50 |  | n0i | ⊢ ( 𝐶  ∈  𝐴  →  ¬  𝐴  =  ∅ ) | 
						
							| 51 | 7 50 | biimtrrdi | ⊢ ( 𝐶  ∈  V  →  ( { 𝐶 }  ⊆  𝐴  →  ¬  𝐴  =  ∅ ) ) | 
						
							| 52 | 51 | con2d | ⊢ ( 𝐶  ∈  V  →  ( 𝐴  =  ∅  →  ¬  { 𝐶 }  ⊆  𝐴 ) ) | 
						
							| 53 | 52 | pm4.71d | ⊢ ( 𝐶  ∈  V  →  ( 𝐴  =  ∅  ↔  ( 𝐴  =  ∅  ∧  ¬  { 𝐶 }  ⊆  𝐴 ) ) ) | 
						
							| 54 |  | eqimss2 | ⊢ ( 𝐴  =  { 𝐶 }  →  { 𝐶 }  ⊆  𝐴 ) | 
						
							| 55 |  | iman | ⊢ ( ( 𝐴  =  { 𝐶 }  →  { 𝐶 }  ⊆  𝐴 )  ↔  ¬  ( 𝐴  =  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐴 ) ) | 
						
							| 56 | 54 55 | mpbi | ⊢ ¬  ( 𝐴  =  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐴 ) | 
						
							| 57 | 56 | biorfri | ⊢ ( ( 𝐴  =  ∅  ∧  ¬  { 𝐶 }  ⊆  𝐴 )  ↔  ( ( 𝐴  =  ∅  ∧  ¬  { 𝐶 }  ⊆  𝐴 )  ∨  ( 𝐴  =  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐴 ) ) ) | 
						
							| 58 | 53 57 | bitr2di | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐴  =  ∅  ∧  ¬  { 𝐶 }  ⊆  𝐴 )  ∨  ( 𝐴  =  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐴 ) )  ↔  𝐴  =  ∅ ) ) | 
						
							| 59 | 49 58 | bitrid | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐴  =  ∅  ∨  𝐴  =  { 𝐶 } )  ∧  ¬  { 𝐶 }  ⊆  𝐴 )  ↔  𝐴  =  ∅ ) ) | 
						
							| 60 | 48 59 | bitrd | ⊢ ( 𝐶  ∈  V  →  ( ( 𝐴  ⊆  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐴 )  ↔  𝐴  =  ∅ ) ) | 
						
							| 61 | 20 | bicomi | ⊢ ( ( 𝐵  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐵 )  ↔  𝐵  =  { 𝐶 } ) | 
						
							| 62 | 61 | a1i | ⊢ ( 𝐶  ∈  V  →  ( ( 𝐵  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐵 )  ↔  𝐵  =  { 𝐶 } ) ) | 
						
							| 63 | 60 62 | anbi12d | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  ¬  { 𝐶 }  ⊆  𝐴 )  ∧  ( 𝐵  ⊆  { 𝐶 }  ∧  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) ) ) | 
						
							| 64 | 45 63 | bitrid | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( ¬  { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) ) ) | 
						
							| 65 | 24 44 64 | 3orbi123d | ⊢ ( 𝐶  ∈  V  →  ( ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) )  ∨  ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∧  ¬  { 𝐶 }  ⊆  𝐵 ) )  ∨  ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( ¬  { 𝐶 }  ⊆  𝐴  ∧  { 𝐶 }  ⊆  𝐵 ) ) )  ↔  ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) ) ) ) | 
						
							| 66 | 17 65 | bitrid | ⊢ ( 𝐶  ∈  V  →  ( ( ( 𝐴  ⊆  { 𝐶 }  ∧  𝐵  ⊆  { 𝐶 } )  ∧  ( { 𝐶 }  ⊆  𝐴  ∨  { 𝐶 }  ⊆  𝐵 ) )  ↔  ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) ) ) ) | 
						
							| 67 | 2 13 66 | 3bitrd | ⊢ ( 𝐶  ∈  V  →  ( ( 𝐴  ∪  𝐵 )  =  { 𝐶 }  ↔  ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) ) ) ) | 
						
							| 68 |  | snprc | ⊢ ( ¬  𝐶  ∈  V  ↔  { 𝐶 }  =  ∅ ) | 
						
							| 69 | 68 | biimpi | ⊢ ( ¬  𝐶  ∈  V  →  { 𝐶 }  =  ∅ ) | 
						
							| 70 | 69 | eqeq2d | ⊢ ( ¬  𝐶  ∈  V  →  ( ( 𝐴  ∪  𝐵 )  =  { 𝐶 }  ↔  ( 𝐴  ∪  𝐵 )  =  ∅ ) ) | 
						
							| 71 |  | pm4.25 | ⊢ ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ↔  ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 72 | 71 | orbi1i | ⊢ ( ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) )  ↔  ( ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 73 | 71 72 | bitri | ⊢ ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ↔  ( ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 74 | 69 | eqeq2d | ⊢ ( ¬  𝐶  ∈  V  →  ( 𝐴  =  { 𝐶 }  ↔  𝐴  =  ∅ ) ) | 
						
							| 75 | 69 | eqeq2d | ⊢ ( ¬  𝐶  ∈  V  →  ( 𝐵  =  { 𝐶 }  ↔  𝐵  =  ∅ ) ) | 
						
							| 76 | 74 75 | anbi12d | ⊢ ( ¬  𝐶  ∈  V  →  ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ↔  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 77 | 74 | anbi1d | ⊢ ( ¬  𝐶  ∈  V  →  ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ )  ↔  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 78 | 76 77 | orbi12d | ⊢ ( ¬  𝐶  ∈  V  →  ( ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ ) )  ↔  ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) ) | 
						
							| 79 | 75 | anbi2d | ⊢ ( ¬  𝐶  ∈  V  →  ( ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } )  ↔  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 80 | 78 79 | orbi12d | ⊢ ( ¬  𝐶  ∈  V  →  ( ( ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ ) )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) )  ↔  ( ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) ) | 
						
							| 81 | 73 80 | bitr4id | ⊢ ( ¬  𝐶  ∈  V  →  ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ↔  ( ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ ) )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) ) ) ) | 
						
							| 82 |  | un00 | ⊢ ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ↔  ( 𝐴  ∪  𝐵 )  =  ∅ ) | 
						
							| 83 | 82 | bicomi | ⊢ ( ( 𝐴  ∪  𝐵 )  =  ∅  ↔  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) | 
						
							| 84 |  | df-3or | ⊢ ( ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) )  ↔  ( ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ ) )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) ) ) | 
						
							| 85 | 81 83 84 | 3bitr4g | ⊢ ( ¬  𝐶  ∈  V  →  ( ( 𝐴  ∪  𝐵 )  =  ∅  ↔  ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) ) ) ) | 
						
							| 86 | 70 85 | bitrd | ⊢ ( ¬  𝐶  ∈  V  →  ( ( 𝐴  ∪  𝐵 )  =  { 𝐶 }  ↔  ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) ) ) ) | 
						
							| 87 | 67 86 | pm2.61i | ⊢ ( ( 𝐴  ∪  𝐵 )  =  { 𝐶 }  ↔  ( ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  { 𝐶 } )  ∨  ( 𝐴  =  { 𝐶 }  ∧  𝐵  =  ∅ )  ∨  ( 𝐴  =  ∅  ∧  𝐵  =  { 𝐶 } ) ) ) |