Step |
Hyp |
Ref |
Expression |
1 |
|
eqss |
⊢ ( ( 𝐴 ∪ 𝐵 ) = { 𝐶 } ↔ ( ( 𝐴 ∪ 𝐵 ) ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ ( 𝐴 ∪ 𝐵 ) ) ) |
2 |
1
|
a1i |
⊢ ( 𝐶 ∈ V → ( ( 𝐴 ∪ 𝐵 ) = { 𝐶 } ↔ ( ( 𝐴 ∪ 𝐵 ) ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ ( 𝐴 ∪ 𝐵 ) ) ) ) |
3 |
|
unss |
⊢ ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ { 𝐶 } ) |
4 |
3
|
bicomi |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ { 𝐶 } ↔ ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ) |
5 |
4
|
a1i |
⊢ ( 𝐶 ∈ V → ( ( 𝐴 ∪ 𝐵 ) ⊆ { 𝐶 } ↔ ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ) ) |
6 |
|
elun |
⊢ ( 𝐶 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵 ) ) |
7 |
|
snssg |
⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ 𝐴 ↔ { 𝐶 } ⊆ 𝐴 ) ) |
8 |
|
snssg |
⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ 𝐵 ↔ { 𝐶 } ⊆ 𝐵 ) ) |
9 |
7 8
|
orbi12d |
⊢ ( 𝐶 ∈ V → ( ( 𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵 ) ↔ ( { 𝐶 } ⊆ 𝐴 ∨ { 𝐶 } ⊆ 𝐵 ) ) ) |
10 |
6 9
|
bitr2id |
⊢ ( 𝐶 ∈ V → ( ( { 𝐶 } ⊆ 𝐴 ∨ { 𝐶 } ⊆ 𝐵 ) ↔ 𝐶 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
11 |
|
snssg |
⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ ( 𝐴 ∪ 𝐵 ) ↔ { 𝐶 } ⊆ ( 𝐴 ∪ 𝐵 ) ) ) |
12 |
10 11
|
bitr2d |
⊢ ( 𝐶 ∈ V → ( { 𝐶 } ⊆ ( 𝐴 ∪ 𝐵 ) ↔ ( { 𝐶 } ⊆ 𝐴 ∨ { 𝐶 } ⊆ 𝐵 ) ) ) |
13 |
5 12
|
anbi12d |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐴 ∪ 𝐵 ) ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ ( 𝐴 ∪ 𝐵 ) ) ↔ ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∨ { 𝐶 } ⊆ 𝐵 ) ) ) ) |
14 |
|
or3or |
⊢ ( ( { 𝐶 } ⊆ 𝐴 ∨ { 𝐶 } ⊆ 𝐵 ) ↔ ( ( { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ∨ ( { 𝐶 } ⊆ 𝐴 ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ∨ ( ¬ { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ) |
15 |
14
|
anbi2i |
⊢ ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∨ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( ( { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ∨ ( { 𝐶 } ⊆ 𝐴 ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ∨ ( ¬ { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ) ) |
16 |
|
andi3or |
⊢ ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( ( { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ∨ ( { 𝐶 } ⊆ 𝐴 ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ∨ ( ¬ { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ) ↔ ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ∨ ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ∨ ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( ¬ { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ) ) |
17 |
15 16
|
bitri |
⊢ ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∨ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ∨ ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ∨ ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( ¬ { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ) ) |
18 |
|
an4 |
⊢ ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( ( 𝐴 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐴 ) ∧ ( 𝐵 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐵 ) ) ) |
19 |
|
eqss |
⊢ ( 𝐴 = { 𝐶 } ↔ ( 𝐴 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐴 ) ) |
20 |
|
eqss |
⊢ ( 𝐵 = { 𝐶 } ↔ ( 𝐵 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐵 ) ) |
21 |
19 20
|
anbi12i |
⊢ ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ↔ ( ( 𝐴 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐴 ) ∧ ( 𝐵 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐵 ) ) ) |
22 |
21
|
bicomi |
⊢ ( ( ( 𝐴 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐴 ) ∧ ( 𝐵 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ) |
23 |
18 22
|
bitri |
⊢ ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ) |
24 |
23
|
a1i |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ) ) |
25 |
|
an4 |
⊢ ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( ( 𝐴 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐴 ) ∧ ( 𝐵 ⊆ { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ) |
26 |
19
|
bicomi |
⊢ ( ( 𝐴 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐴 ) ↔ 𝐴 = { 𝐶 } ) |
27 |
26
|
a1i |
⊢ ( 𝐶 ∈ V → ( ( 𝐴 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐴 ) ↔ 𝐴 = { 𝐶 } ) ) |
28 |
|
sssn |
⊢ ( 𝐵 ⊆ { 𝐶 } ↔ ( 𝐵 = ∅ ∨ 𝐵 = { 𝐶 } ) ) |
29 |
28
|
a1i |
⊢ ( 𝐶 ∈ V → ( 𝐵 ⊆ { 𝐶 } ↔ ( 𝐵 = ∅ ∨ 𝐵 = { 𝐶 } ) ) ) |
30 |
29
|
anbi1d |
⊢ ( 𝐶 ∈ V → ( ( 𝐵 ⊆ { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ↔ ( ( 𝐵 = ∅ ∨ 𝐵 = { 𝐶 } ) ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ) |
31 |
|
andir |
⊢ ( ( ( 𝐵 = ∅ ∨ 𝐵 = { 𝐶 } ) ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ↔ ( ( 𝐵 = ∅ ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ∨ ( 𝐵 = { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ) |
32 |
|
n0i |
⊢ ( 𝐶 ∈ 𝐵 → ¬ 𝐵 = ∅ ) |
33 |
8 32
|
syl6bir |
⊢ ( 𝐶 ∈ V → ( { 𝐶 } ⊆ 𝐵 → ¬ 𝐵 = ∅ ) ) |
34 |
33
|
con2d |
⊢ ( 𝐶 ∈ V → ( 𝐵 = ∅ → ¬ { 𝐶 } ⊆ 𝐵 ) ) |
35 |
34
|
pm4.71d |
⊢ ( 𝐶 ∈ V → ( 𝐵 = ∅ ↔ ( 𝐵 = ∅ ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ) |
36 |
|
eqimss2 |
⊢ ( 𝐵 = { 𝐶 } → { 𝐶 } ⊆ 𝐵 ) |
37 |
|
iman |
⊢ ( ( 𝐵 = { 𝐶 } → { 𝐶 } ⊆ 𝐵 ) ↔ ¬ ( 𝐵 = { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) |
38 |
36 37
|
mpbi |
⊢ ¬ ( 𝐵 = { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐵 ) |
39 |
38
|
biorfi |
⊢ ( ( 𝐵 = ∅ ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ↔ ( ( 𝐵 = ∅ ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ∨ ( 𝐵 = { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ) |
40 |
35 39
|
bitr2di |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐵 = ∅ ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ∨ ( 𝐵 = { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ↔ 𝐵 = ∅ ) ) |
41 |
31 40
|
syl5bb |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐵 = ∅ ∨ 𝐵 = { 𝐶 } ) ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ↔ 𝐵 = ∅ ) ) |
42 |
30 41
|
bitrd |
⊢ ( 𝐶 ∈ V → ( ( 𝐵 ⊆ { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ↔ 𝐵 = ∅ ) ) |
43 |
27 42
|
anbi12d |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐴 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐴 ) ∧ ( 𝐵 ⊆ { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ) ) |
44 |
25 43
|
syl5bb |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ) ) |
45 |
|
an4 |
⊢ ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( ¬ { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( ( 𝐴 ⊆ { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ∧ ( 𝐵 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐵 ) ) ) |
46 |
|
sssn |
⊢ ( 𝐴 ⊆ { 𝐶 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐶 } ) ) |
47 |
46
|
a1i |
⊢ ( 𝐶 ∈ V → ( 𝐴 ⊆ { 𝐶 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐶 } ) ) ) |
48 |
47
|
anbi1d |
⊢ ( 𝐶 ∈ V → ( ( 𝐴 ⊆ { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐶 } ) ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ) ) |
49 |
|
andir |
⊢ ( ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐶 } ) ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ↔ ( ( 𝐴 = ∅ ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ∨ ( 𝐴 = { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ) ) |
50 |
|
n0i |
⊢ ( 𝐶 ∈ 𝐴 → ¬ 𝐴 = ∅ ) |
51 |
7 50
|
syl6bir |
⊢ ( 𝐶 ∈ V → ( { 𝐶 } ⊆ 𝐴 → ¬ 𝐴 = ∅ ) ) |
52 |
51
|
con2d |
⊢ ( 𝐶 ∈ V → ( 𝐴 = ∅ → ¬ { 𝐶 } ⊆ 𝐴 ) ) |
53 |
52
|
pm4.71d |
⊢ ( 𝐶 ∈ V → ( 𝐴 = ∅ ↔ ( 𝐴 = ∅ ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ) ) |
54 |
|
eqimss2 |
⊢ ( 𝐴 = { 𝐶 } → { 𝐶 } ⊆ 𝐴 ) |
55 |
|
iman |
⊢ ( ( 𝐴 = { 𝐶 } → { 𝐶 } ⊆ 𝐴 ) ↔ ¬ ( 𝐴 = { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ) |
56 |
54 55
|
mpbi |
⊢ ¬ ( 𝐴 = { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐴 ) |
57 |
56
|
biorfi |
⊢ ( ( 𝐴 = ∅ ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ↔ ( ( 𝐴 = ∅ ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ∨ ( 𝐴 = { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ) ) |
58 |
53 57
|
bitr2di |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐴 = ∅ ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ∨ ( 𝐴 = { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ) ↔ 𝐴 = ∅ ) ) |
59 |
49 58
|
syl5bb |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐶 } ) ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ↔ 𝐴 = ∅ ) ) |
60 |
48 59
|
bitrd |
⊢ ( 𝐶 ∈ V → ( ( 𝐴 ⊆ { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ↔ 𝐴 = ∅ ) ) |
61 |
20
|
bicomi |
⊢ ( ( 𝐵 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐵 ) ↔ 𝐵 = { 𝐶 } ) |
62 |
61
|
a1i |
⊢ ( 𝐶 ∈ V → ( ( 𝐵 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐵 ) ↔ 𝐵 = { 𝐶 } ) ) |
63 |
60 62
|
anbi12d |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐴 ⊆ { 𝐶 } ∧ ¬ { 𝐶 } ⊆ 𝐴 ) ∧ ( 𝐵 ⊆ { 𝐶 } ∧ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ) |
64 |
45 63
|
syl5bb |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( ¬ { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ) |
65 |
24 44 64
|
3orbi123d |
⊢ ( 𝐶 ∈ V → ( ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ∨ ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∧ ¬ { 𝐶 } ⊆ 𝐵 ) ) ∨ ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( ¬ { 𝐶 } ⊆ 𝐴 ∧ { 𝐶 } ⊆ 𝐵 ) ) ) ↔ ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ) ) |
66 |
17 65
|
syl5bb |
⊢ ( 𝐶 ∈ V → ( ( ( 𝐴 ⊆ { 𝐶 } ∧ 𝐵 ⊆ { 𝐶 } ) ∧ ( { 𝐶 } ⊆ 𝐴 ∨ { 𝐶 } ⊆ 𝐵 ) ) ↔ ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ) ) |
67 |
2 13 66
|
3bitrd |
⊢ ( 𝐶 ∈ V → ( ( 𝐴 ∪ 𝐵 ) = { 𝐶 } ↔ ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ) ) |
68 |
|
snprc |
⊢ ( ¬ 𝐶 ∈ V ↔ { 𝐶 } = ∅ ) |
69 |
68
|
biimpi |
⊢ ( ¬ 𝐶 ∈ V → { 𝐶 } = ∅ ) |
70 |
69
|
eqeq2d |
⊢ ( ¬ 𝐶 ∈ V → ( ( 𝐴 ∪ 𝐵 ) = { 𝐶 } ↔ ( 𝐴 ∪ 𝐵 ) = ∅ ) ) |
71 |
|
pm4.25 |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ↔ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
72 |
71
|
orbi1i |
⊢ ( ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ↔ ( ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
73 |
71 72
|
bitri |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ↔ ( ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
74 |
69
|
eqeq2d |
⊢ ( ¬ 𝐶 ∈ V → ( 𝐴 = { 𝐶 } ↔ 𝐴 = ∅ ) ) |
75 |
69
|
eqeq2d |
⊢ ( ¬ 𝐶 ∈ V → ( 𝐵 = { 𝐶 } ↔ 𝐵 = ∅ ) ) |
76 |
74 75
|
anbi12d |
⊢ ( ¬ 𝐶 ∈ V → ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
77 |
74
|
anbi1d |
⊢ ( ¬ 𝐶 ∈ V → ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
78 |
76 77
|
orbi12d |
⊢ ( ¬ 𝐶 ∈ V → ( ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ) ↔ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) ) |
79 |
75
|
anbi2d |
⊢ ( ¬ 𝐶 ∈ V → ( ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
80 |
78 79
|
orbi12d |
⊢ ( ¬ 𝐶 ∈ V → ( ( ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ↔ ( ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) ) |
81 |
73 80
|
bitr4id |
⊢ ( ¬ 𝐶 ∈ V → ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ↔ ( ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ) ) |
82 |
|
un00 |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ↔ ( 𝐴 ∪ 𝐵 ) = ∅ ) |
83 |
82
|
bicomi |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) |
84 |
|
df-3or |
⊢ ( ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ↔ ( ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ) |
85 |
81 83 84
|
3bitr4g |
⊢ ( ¬ 𝐶 ∈ V → ( ( 𝐴 ∪ 𝐵 ) = ∅ ↔ ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ) ) |
86 |
70 85
|
bitrd |
⊢ ( ¬ 𝐶 ∈ V → ( ( 𝐴 ∪ 𝐵 ) = { 𝐶 } ↔ ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ) ) |
87 |
67 86
|
pm2.61i |
⊢ ( ( 𝐴 ∪ 𝐵 ) = { 𝐶 } ↔ ( ( 𝐴 = { 𝐶 } ∧ 𝐵 = { 𝐶 } ) ∨ ( 𝐴 = { 𝐶 } ∧ 𝐵 = ∅ ) ∨ ( 𝐴 = ∅ ∧ 𝐵 = { 𝐶 } ) ) ) |