Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
|- ( A F B ) = ( F ` <. A , B >. ) |
2 |
1
|
eqeq1i |
|- ( ( A F B ) = (/) <-> ( F ` <. A , B >. ) = (/) ) |
3 |
|
afvfv0bi |
|- ( ( F ` <. A , B >. ) = (/) <-> ( ( F ''' <. A , B >. ) = (/) \/ ( F ''' <. A , B >. ) = _V ) ) |
4 |
|
df-aov |
|- (( A F B )) = ( F ''' <. A , B >. ) |
5 |
4
|
eqeq1i |
|- ( (( A F B )) = (/) <-> ( F ''' <. A , B >. ) = (/) ) |
6 |
5
|
bicomi |
|- ( ( F ''' <. A , B >. ) = (/) <-> (( A F B )) = (/) ) |
7 |
4
|
eqeq1i |
|- ( (( A F B )) = _V <-> ( F ''' <. A , B >. ) = _V ) |
8 |
7
|
bicomi |
|- ( ( F ''' <. A , B >. ) = _V <-> (( A F B )) = _V ) |
9 |
6 8
|
orbi12i |
|- ( ( ( F ''' <. A , B >. ) = (/) \/ ( F ''' <. A , B >. ) = _V ) <-> ( (( A F B )) = (/) \/ (( A F B )) = _V ) ) |
10 |
2 3 9
|
3bitri |
|- ( ( A F B ) = (/) <-> ( (( A F B )) = (/) \/ (( A F B )) = _V ) ) |